Modeling Texas Hold’em Poker Strategies with
Bayesian Networks

Konstantin Tretyakov, Liina Kamm
University of Tartu

Bayesian Networks, MTAT.05.113, September 2009

1 Introduction

Poker is an exciting game of chance, psychology and skill. Development of an
algorithm for playing poker (a pokerbot) has long been a beloved research topic
for procrastinating computer scientists. In this work we join their ranks by pre-
senting an example of a Bayesian network—driven approach to modeling strategy
for a pokerbot. This approach is, naturally, not new — a well-known Bayesian
poker player dates from 1999 [3] with improvements and variations being devel-
oped ever since [4, 5]. Nonetheless, we believe there are still numerous paths to
be explored in this area. For example, it is only recently that the possibility of
exhaustively enumerating all the 52!/43! = 1335062 881 152 000 nine-card com-
binations defining the states of two-player Texas holdem has become commonly
accessible.

Although the approaches we are going to discuss might be applicable, with
small modifications, to a wide variety of poker games, we fix our goal here to
the game of two player fized limit Texas hold’em. Besides being one of the most
popular poker variations in existence, it is also simple enough to fit nicely into
the limited scope of this project.

2 Poker Rules

Two player fixed limit Texas hold’em [6] is played using a single shuffled full deck
of cards. Players alternatively play the role of the dealer. Each game consists
of four rounds, typically named preflop, flop, turn, and river. The first round,
preflop, begins with each of the two players being dealt two cards face down,
which is followed by a round of betting. On the flop three cards are dealt face
up on the table, and the players proceed with a second betting round. On the
turn one more face-up card is added to the table and one more betting round is
made. Finally, on the river the fifth card is dealt face up onto the table and a
final betting round is played. If none of the players conceded (folded) during the
betting rounds, they disclose their private (hole) cards to the opponent. The



player whose hole cards, when combined with the 5 cards on the table, result
in the highest combination (see Table 1), wins the pot — all of the money that
has been placed in bets during the betting rounds.

In each of the betting rounds the players make turns, declaring a bet, check,
raise, fold or a call on each turn. The round typically starts with a bet, when
the player places a fixed-amount of chips on the table!, or a check, which is
essentially equivalent to a bet of zero. The opponent may then respond with
either a call, by placing an equal-sized bet, or with a raise, which means placing
an equal-sized bet and adding another one on top. A player may fold at any
moment, which makes him forfeit the game and everything that was placed
in bets to that moment. A round is finished when either of the players calls,
folds, or if both players check. In most cases the rules also limit the number of
consecutive raises within one round.

A single poker match consists of multiple games, with the final score being
the number of chips won by the player in the end.

’ Name Meaning ‘

High card No combination. In case of a tie the
player with the highest card wins.

One pair A pair of cards of the same value. The
higher value pair wins.

Two pairs Two pairs of cards.

Three of a kind | Three cards of the same value.

Straight Five cards in a sequence.

Flush Five cards of the same suit.

Full house A triple and a pair.

Four of a kind Four cards of the same value.

Straight flush Five cards of the same suit in a se-
quence.

Table 1: Poker combinations, in ascending order of value.

3 Poker Strategy

Poker has always been one of the holy grails of the computer science community.
Up to now, despite the steady progress, no pokerbot has been demonstrated to
play on par with the best human players. Interestingly, the reason for such
mediocre development does not lie in the inherent complexity of the game state
space, as it is the case with, for instance, Computer Go. Instead, the problem
here lies in the fact that poker, similarly to the game of Rock-Paper-Scissors, is
a symmeltric zero-sum nontransitive game.

1This amount is decided before the game and may vary between the rounds. For instance,
a 10/20 fized limit hold’em usually means that the bet amount is 10 units on preflop and flop,
and 20 units during turn and river.



Firstly, the game is (asymptotically) symmetric — even if one of the players
(e.g. the dealer) has an advantage in a single game, in the long run that doesn’t
matter because players alternate as dealers. Together with the zero-sum condi-
tion it immediately implies that there may not exist an optimal strategy, which
could guarantee positive winnings. Yet for any fixed strategy there should exist
another one that could beat it in the long run — a feature called nontransitivity.

Theorem 1 (Nontransitivity of poker). By a strategy we understand a (possi-
bly stochastic) function, that, given all available information about the current
match (i.e. the hole cards, the cards on the table, previous actions of the op-
ponent), decides the player’s next action. For any given known strategy s there
exists another strategy that would play no worse than s.

Informal proof. Consider two kinds of strategies — those that depend on the hole
cards, and those that do not. Suppose s does not use the hole cards (i.e. it is a
“blind” strategy). In this case the winning strategy for the opponent would be to
use the knowledge of his hole cards and the player’s strategy to compute precisely
the odds of winning and act in accordance with the maximum expected utility
principle. Clearly, this would guarantee an edge over s, which may not “know”
the utilities of his actions as precisely and will thus act suboptimally. Now
suppose that the actions of s do depend on the hole cards. In this case knowledge
of s provides the opponent with a way of inferring probabilistic information
about the player’s cards by observing his actions. This again allows to compute
the odds more precisely than whatever s does, which results in nonnegative
winnings in the long run. O

As an example consider three kinds of strategies - reserved (only play sure
hands), active (avoid weak hands, but otherwise play actively) and bluff (always
play strongly). It is well known that a reserved strategy would most often beat
an active one, that an active strategy would bust a bluff, and that a bluff would
beat a reserved strategy.

What follows from the above observations is that we shouldn’t be so much
interested in a strategy, which would be optimal against all opponents, because
it would necessarily have zero payoff against every particular opponent. Instead,
it makes more sense to limit the potential space of opponents and then attempt
to learn the opponent’s strategy in order to gain better knowledge of his hole
cards. Observations seem to indicate that the best human poker players are
highly adaptive in their strategies, which means that a pokerbot aiming to
compete with them must be at least as good. However, the development of a
learning pokerbot is a highly nontrivial task, necessarily combining basic game
theory with the statistical learning. This leads us to the answer to the question
why computer poker is so hard. It also follows that any pokerbot algorithm
that considers only a very limited amount of information about the opponent’s
play is not going to exceed level of a human amateur, at best.



4 Bayesian Network Models for Poker

Although Bayesian networks provide convenient means for probabilistic infer-
ence and graphical modeling, they are not meant for construction of adaptive
algorithms. It follows that a purely Bayesian network-based pokerbot is not go-
ing to beat a proficient human player — a result that has already been observed
in the work of Korb et al [3]. Nonetheless, the formalism of Bayesian networks
provides a good starting point for understanding the problem and might be
useful as a part of a more complex system.

4.1 Board state

Let us consider a fixed timepoint during a game. From the point of view of the
player, it can be represented by a Bayesian network shown in Figure 1.

The random variable Deal corresponds to a sample of 9 cards picked uni-
formly from the deck. Two of the cards make up the player’s hand, two cor-
respond to the opponent’s hand, and five remaining are the board cards. The
player can observe his own hand and the cards on the board (depending on the
round there will be 0, 3, 4 or 5 cards there). The variable Win denotes the
resolution of the game, if it proceeds to showdown. It can take values 1, 0 and
—1 depending on whether the complete 9-card deal is a win for the player, a
draw, or a loss. The variables Current Pot (CP) and Final Pot (FP) denote
the state of the pot at the current moment and by the end of the game. Both
CP and FP are represented as pairs of numbers (CPy,, CP,;,) and (FPp, FP,p)
— the amounts of money bet by each player respectively. The nodes Player
Strategy and Opponent Strategy define the betting actions of the players during
the game. For visual clarity we omit the dependence of the opponent’s strategy
on CP, CB and OH. The Fold? decision node is a shorthand representing the
dependence of the outcome on the folding of either of the players. Finally, the

Player Hand (PH) Current Board (CB) Opponent Hand (OH)

Current Pot (CP)

| Player Strategy (PS)

Figure 1: Poker game state.



Outcome is a utility node defined as follows:

FP,, 4+ CPpy, if Win = 1 or opponent folds,
Outcome = § (FP,, — FP)/2 4+ CP,, if Win = 0,
CPp — FPpy, otherwise.

In theory, we could now use the described network to compute the opti-
mal Player Strategy in accordance with the maximum expected utility prin-
ciple. Unfortunately, however, this would only be practical for rather sim-
ple models of Opponent Strategy. Besides, the network only represents the
static state of the game at a given timepoint, and is therefore incapable of
inferring information about Opponent Strategy from previous observations. Fi-
nally, the specification of conditional distibution of the Opponent Strategy node
Pr[OS|CB, OH, CP, PS,...] is too unwieldy. In the following we try to address
these issues.

4.2 Representing Strategy

The strategy (i.e., the set of player decisions) for fixed limit holdem games can
be represented in numerous ways. In some cases a very high-level representation,
such as {reserved, active, bluff } might be appropriate. In other cases a detailed
account of the complete sequence of bets, raises and fold is desired. In this work
we propose a middle ground, which seems both easy to represent and detailed
enough for practical implementation. For each point in the game, we define the
player’s current strategy as one of the following choices, representing his decision
of how the current round should be played:

’ Name \ Meaning ‘

0/0 Check. Fold on any opponent’s bet.
0/1 Check. Call one opponent’s bet.

1/1 Bet once or call one opponent’s bet.
Fold if the first bet is raised.
1/2 Bet once or call one opponent’s bet. If

opponent raises, call the second bet.
2/2 Try to initiate at least a double bet. If
the opponent reraises to the third time,
fold.

2/3 Try to initiate at least a double bet.
Call a third raise.

3/3 Accept at least triple bet, but no more.
3/4 Accept a triple or a quadruple bet.

Table 2: Player’s current strategy choices.

Depending on the desired granularity of representation, the overall player’s
strategy may now be represented as a sequence of current strategy values — one



per turn, one per round, one per game, or even one per match. In this work
we consider a manageable case of a single current strategy per betting round.
Clearly, the player may only observe the opponent’s betting pattern but not
directly the strategy. For instance, suppose the opponent bets and the player
calls. The player may now infer that the opponent’s strategy is 1/1 or anything
higher than that. This uncertainty may be naturally modeled as an additional
node in the network:

Opponent Strategy (0S) Opponent Actions (OA)

Figure 2: Strategy is observed in the form of actions.

4.3 Representing Player Hands

So far, we modeled the observable state of the board using the random vari-
ables Player Hand (PH) and Current Board (CB). This leads to a enormous
number of states for each of these nodes and is thus highly impractical. Let
us observe that the player would mostly use the knowledge of these cards for
only two purposes. Firstly, he can get an idea of his winning chances by esti-
mating Player Odds = Pr[Win|PH, CB]. Secondly, he might examine the board
cards in relation with the opponent’s actions to get an idea of the opponent’s
chances and thus further improve the estimate for the Win variable. This im-
mediately suggests that replacing the node PH with Player Odds (PO) will
barely loose any generality. We perform a similar step for OH, replacing it with
Opponent Odds = Pr[Win|OH, CB]. Finally, we drop the node CB, presuming
that most of the important information from it has remained in the two newly
added nodes. The resulting network (together with the modification from the
previous section) is presented in Figure 3.

Player Odds Oppenent Odds (0O}

(PO)

Current Pot

Final Pot (FP)

Y

Player Strategy (PS) I > Opponent Strategy (0OS)

Opponent Actions (OA)

Figure 3: Network for a single round.



4.4 Modeling the Opponent

Note that the network in Figure 3 is only one step away from being a properly
specified ready to use Bayesian network. What lacks is the specification of
the opponent strategy, i.e. the conditional distribution Pr[OS|OO, CP,PS]. As
we already discussed before, the choice here is somewhat arbitrary and always
suboptimal (indeed, if we knew the strategy of an “optimal” opponent, we
could forget the whole Bayesian network business and simply play this strategy
ourselves). For all practical purposes one would probably do well by picking
something recommended by the “Poker for Dummies” textbook as a candidate
for the opponent’s strategy. Another good option is to learn it from the data. As
both of the options met some problems on their way to the project’s deadline,
we must limit ourselves to a manually specified example of how a very simple
opponent’s strategy could look like.

A an amateur opponent’s strategy might, in fact, only use the OpponentOdds
(0O0) of the cards to decide:

0/0, if 00 < 0.2,

0/1, if0.2 <00 <04,
0S(00) =< 1/2, if0.4< 00 < 0.6,

2/3, if 0.6 < 00 < 0.8,

3/4, if0.8 < 00.

As noted in the previous sections, by using a fixed model of the opponent
we ignore an important aspect of poker — the potential for adaptation. To
enable the network to learn the opponent’s strategy we must parameterize the
variable Opponent Strategy, i.e., introduce an additional node Opponent Strategqy
Type (OST). For example, this might have values {reserved, active, bluff}, and
influence the strategy by shifting the abovementioned limits on the odds up,
down, and significantly down correspondingly.

Finally, in order to be able to carry the knowledge gained about the opponent
through multiple rounds and games, the separate networks for all rounds must
become connected sequentially through the OST nodes. This would allow to
learn at least those opponents, whose strategy types do not change quickly. The
overall final design of the proposed network is given in Figure 4.

5 Discussion and Future Work

In the course of this project we have developed a novel architecture for a
Bayesian network-based poker player. The proposed architecture is based on
sound ideas, knowledge of previous work and extensive experimentation with
a number of different models. Unfortunately, we have not yet found a way to
execute the designed network and evaluate its performance in practice due to
a hard deadline limiting the scope of the project. We have implemented a fast
enumerator of 9-card poker states and still plan to run it on the grid in order



current Pot (CP)

Copponent odds (00)

Player Cdds (PO

To next round

Cpponent Strategy Type (03T)

3

Final Pot (FE)

Player Strategy (P3) I > Opponent Strategy

{og)
From previous

round

Cpponent Actions (OR)

Figure 4: Final network design.

to precompute the distribution Pr[PO, OO, Win], which is required for the ex-
ecution of the network. The second thing that needs to be done for that is the
custom implementation of the network logic. The existing software turned out
to be unsuitable for dealing with the ordinal nodes CP and FP. Finally, it would
be nice to evaluate the network’s performance against a different pokerbot.

References

1]

Bowling, M., Johanson, M., Burch, N., Szafron, D. Strategy Evaluation
in Extensive Games with Importance Sampling. Proceedings of the 25th
Annual International Conference on Machine Learning (ICML), pp 72-70,
2008

Johanson, M., Zinkevich, M., Bowling, M. Computing Robust Counter-
Strategies Advances in Neural Information Processing Systems 20 (NIPS),
pp 721-728, 2008

Korb, K. B., Nicholson, A. E., and Jitnah, N. Bayesian poker. In UAT’'99 -
Proceedings of the 15th International Conference on Uncertainty in Artifi-
cial Intelligence, Sweden 1999, pp. 343-350.

Nicholson, A. E.; Korb, K. B., and Boulton, D. Using Bayesian Networks
to Play Texas Hold’em Poker.

Terry, M. A, Mihok, B. E. A Bayesian Net Inference Tool for
Hidden State in Texas Hold’em Poker. http://ocw.mit.edu/NR/
rdonlyres/Aeronautics-and-Astronautics/16-412JSpring-2005/
26C3A790-77CA-460A-B97B-CE26E3BFCCF4/0/mihokterry. pdf, last
viewed 20.06.2009



[6] Wikipedia - Texas hold’em, http://en.wikipedia.org/wiki/Texas_
hold_’em, last viewed 15.06.2009.

[7] Zinkevich, M., Johanson, M., Bowling, M., Piccione, C. Regret Minimiza-
tion in Games with Incomplete Information. Advances in Neural Informa-
tion Processing Systems 20 (NIPS), pp 1729-1736, 2008



