Methods of Genomic Data Fusion: An Overview

Konstantin Tretyakov (kt@ut.ee)

May 4, 2006

Abstract

The abundance of high-throughput biological data,
such as microarray or protein-protein interaction
assays has lead to a need for new methods of data
analysis, that could infer useful information from
large amounts of very noisy and indirect measure-
ments. One solution could be provided by data fu-
sion. Data fusion is a relatively recent term de-
scribing machine learning methods that can inte-
grate disparate datasets and thus reduce the over-
all noise, increase statistical significance as well as
leverage the interactions and correlations between
the datasets to obtain more refined and higher-
level information. This paper gives a very brief
overview of two very general and well-developed
approaches to data fusion—Bayesian networks and
kernel methods. It may therefore be of interest to
a reader not previosly familiar with these terms,
willing to grasp the most basic understanding of
the underlying ideas.

1 Introduction

High-throughput Methods

High-thoughput methods are playing an increasingly
important role in the contemporary biological re-
search. Microarray technologies allow measure-
ments of thousands mRNA transcripts, shotgun-
sequencing has resulted in complete genomes of
several organisms, ChIP-on-chip assays, mass-
spectrometry and yeast-2-hybrid screening pro-
vide insights into protein-DNA and protein-protein
binding properties, etc. Enormous amounts of data
have already been produced using these methods,
and a lot of hope is being put in the possibility of
discovering the relevant biological information from
this data.

All the high-throughput methods, however, share
several common traits, that make data analysis
rather complicated. Firstly, the measurements are
usually indirect. For example, mRNA microarrays
measure the amount of certain mRNA transcripts
for each gene, giving only an indirect indication of
the true value of interest—the amount of protein
produced for each gene. ChIP measurements can
only reveal large regions in the DNA where a given
protein would bind, whereas we are interested in
the specific positions. Y2H screens can tell whether
two proteins can participate in the same complex,
while we would like to know whether they can bind
to each other, etc. Secondly, the data produced
is usually very noisy. It is common that two mi-
croarray datasets produced by different laborato-
ries would have correlation close to zero—so large is
the noise in the data. At last, the overall methodol-
ogy of first taking some generic measurements and
later trying by any means to figure out the under-
lying patterns is not very well supported by pure
statistics and requires the use of much more recent
techniques of machine learning.

Data Fusion

Data fusion is one technique that is especially use-
ful for the analysis of high-throughput experiment
data. The idea is that incorporating more than one
genomic dataset in the analysis may be beneficial,
by reducing the noise, as well as improving statisti-
cal significance and leveraging the interactions and
correlations between the datasets to obtain more
refined and higher-level information. Considerable
work has been devoted to the problem of genomic
data fusion. The general approaches can be roughly
divided into three classes: early, intermediate and
late integration.

The simplest idea is that of late integration:
each dataset is treated independently and sepa-

rate inferences are made. The results obtained in
this way from each dataset can then be converted
to a common form and somehow merged. Such
an approach has been used, for example, to vali-
date gene expression and protein-protein interac-
tion data [1, 2, 3], to infer protein function [4, 5],
or to analyze the gene regulatory graphs resulting
from different datasets [6, 7].

When late integration means combining the out-
puts, early integration methods combine heteroge-
neous input sources in a consistent manner, and
then rely on a single analysis method. The whole
problem is then reduced to finding a convenient
common representation for different types of data.
For example, if every dataset in question can be
represented as a set of vectors, it is often possi-
ble to concatenate the vectors from the datasets
and feed the combined datapoints into a general-
purpose classification or regression procedure. Dis-
tance metrics, kernels, probability distributions or
graphs are other options for a common data for-
mat. Instances of such an approach have been
used, among others, for protein function prediction
[8, 9, 10, 11, 12], to infer protein-protein interac-
tions [13, 14] and protein complexes [15, 16].

At last, intermediate integration corresponds to
methods that don’t clearly fall under the title of
either early or late integration. These usually use a
custom statistical procedure for combining specific
kinds of data in data-dependent ways. For exam-
ple, rather common are the approaches that infer
regulatory motifs by clustering genes by their ex-
pression profiles and searching for overrepresented
substrings in the DNA sequences of the genes in
a cluster. Another common scenario is functional
annotation of gene clusters by analyzing them for
overrepresented GO categories. Other examples in-
clude methods for locationg transcriptional mod-
ules [17] and transcription factor bindings [18].

Of the three named classes, early integration
methods seem particularly interesting for they of-
ten scale to integrating nearly any number of nearly
arbitrary kinds of data in a systematic and consis-
tent manner. This article briefly reviews two ap-
proaches to early integration: Bayesian networks
and kernel methods.

2 Bayesian networks

Bayesian network is a graphical probabilistic
model, that allows to combine disparate evidence
with prior knowledge of interrelations within the
data to produce a single probabilistic answer. The
idea is easy to explain on a series of examples.
Consider the question of whether two given pro-
teins interact or not. Suppose we cannot determine
this fact directly, but we have microarray expres-
sion profiles of the genes at our disposal. It might
be reasonable to assume that interacting genes are
more likely to have similar expression. We can de-
scribe this belief as a set of conditional probabili-
ties:

P(similar expression | interaction) := P(E|I) = 0.7

P(similar expression | no interaction) := P(E| —I) =0.4

Once we determine that two genes have similar ex-
pression, we can calculate, using the Bayes rule, the
probability of them interacting:

P(E|I)P(I)

P E) _ P(E| DP(I)

P(E)

where P(I) indicates our prior belief in the fact
that two proteins interact. Choosing P(I) =
0.5 would mean that we are completely uncertain
about whether the interaction takes place or not.
By plugging this prior in the formula, we obtain
P(I|E) = 0.64, which indicates some degree of
confidence in the fact that proteins indeed inter-
act.

We could graphically display the employed com-
putation scheme in the following way:

interaction
expression

The graph indicates the causality structure that,
we believe, underlies the phenomenon of interest:
interaction causes similar expression. We can plug-
in our knowledge of similar expression and obtain
the resulting probability of interaction.

- P(E|I)P(I)+ P(E| —I)P(-I)

But suppose now that besides the microarray
dataset, we also posess data of a Y2H screening
experiment. Again, it is reasonable to assume that
interacting proteins are highly likely to report Y2H
binding;:

P(Y2H binding | interaction) := P(Y | I) = 0.9

P(Y2H binding | no interaction) := P(Y | — 1) = 0.3

Suppose the Y2H data reported no binding. Can
we combine this evidence with previous microarray
data to refine our knowledge of interaction proba-
bility?

P(-Y, B|)P(I)
P(-Y,E)

P(I| - Y,E) =

As you see, not unless we know the combined con-
ditional distribution P(Y, E|I). However, it may
be reasonable to assume that Y2H binding results
and microarray results are conditionally indepen-
dent, given the knowledge about their interaction.
That is, if we knew whether proteins really inter-
acted or not, the Y2H binding result would not pro-
vide any additional information about the possible
microarray result. In this case,

P(-Y,E|I) = P(~Y |)P(E|I)

and we can continue the calculation to obtain
P(I| =Y,E)=0.2. As you see, the negative Y2H
evidence strongly influenced our posterior belief.

As before, we can visualize the structure of our
beliefs as a directed graph:

interaction
expression

The graph reads: interaction causes certain ex-
pression and Y2H results, but these two types of
results are independent, if their cause (i.e. interac-
tion) is known. In order to use the graph, we feed
in our knowledge of actual expression and Y2H re-
sults, propagate the probabilities and obtain the
posterior probability of proteins interacting.

Now we might note that Y2H results are actually
more influenced by the fact that genes can partic-
ipate in the same complex, we could therefore add

another causal relationship:

expression

In this case the Y2H result depends on both
the interaction and the ability to participate in the
same complex. To specify such network, we should
provide the probabilities P(Y | I,C) for each pair
(I,C) (where C stands for participation in the same
complez). We could use the network in the same
manner as before: by feeding the known inputs Y
and E and receiving the outputs I and C. In fact,
we can feed any set of known variables as inputs and
obtain the posterior distribution of the remaining
variables.

Much more complex networks can be constructed
in this manner, that would be able to combine data
in a variety of sophisticated ways. And although in
most common applications a Bayesian network is
designed with a help of an expert, algorithm exist
that can automatically infer network topology from
data. The major drawback of Bayesian networks is
their computational cost: evaluation of networks
with complicated topologies can take exponential
time. However, evaluation of simple tree-like net-
works is always effective.

The topic of Bayesian networks is very wide:
extensive literature exists covering the (rather
nontrivial) questions of effective network evalua-
tion, training and statistical inference. A simple
overview can be obtained in [19, 20, 21] as well as
in special textbooks on the topic.

Bayesian Networks for Data Fusion

It should be clear now that the Bayesian network
formalism is very convenient for integrating dis-
parate genomic datasets. And, indeed, some work
has been done in this area. For example, Jansen
et al. [13] designed a Bayesian network for predic-
tion of protein-protein interactions, that combines
experimental interaction data, mRNA expression

and GO annotations into predictions, whose relia-
bility is superior to those made on the basis of any
single dataset alone.

In another similar work by Troyanskaya et al.
[12], a tree-like Bayesian network was designed for
purposes of gene function prediction. The network
combined different experimental measurements of
coexpression, colocalization, physical and genetic
associations to predict functional associations of
genes. Again, it turned out that results of the com-
bined analysis allowed to produce much more con-
fident functional gene annotations.

3 Kernel Methods

Several machine learning methods, such as linear
regression or linear classification, although initially
defined as methods for classifying vectors from R™,
are actually applicable to a much wide range of
datatypes. Take, for example, ordinary linear re-
gression. The problem is often stated in a way sim-
ilar to the following:

Given a set of labeled vectors
{(XnsYn)yxn ER™yeRnel...N},
find a linear discriminator function
Fu(x) = (w, %),

that minimizes the sum of error squares

Z(fw(xn) —yn)?.

n

It is possible to show that the solution vector w
can be expressed as a linear combination of initial

datapoints:
w = Z ApXp ,
n

and the resulting function can thus be expressed as

fa(x) = <Z anxn,x> = Zan<xn,x>,

which allows to rephrase the original problem in
terms of values «,:

Given a set of labeled vectors, find such a for
which the function f, has the least possible
sum of error squares.

It is notable, that in this new formulation, the
fact that x, are actually wvectors is only needed
to make sense of the inner product operation (-, -).
That is, the formulation now actually admits any
datatype, for which we can define a notion of inner
product, which in this context is often referred to
as a kernel function. The case of linear regression
is not exceptional—pretty much any linear algo-
rithm can be kernelized, i.e. represented in such
a way that the only operation performed with the
datapoints is evaluation of the inner product.

Surprisingly, several different kernel functions
have been defined even for such complex datatypes
as strings or graphs. One simple example of an
inner product defined on strings is given by the k-
mer kernel: we can transform each string to a vec-
tor where each element counts the number of oc-
curences of a certain k-mer in the string and then
calculate inner products of such vectors. A kernel
must not necessarily be defined as an explicit in-
ner product of some vectorized form of the data.
It is possible to show that any positive semidefi-
nite function K (x,y) corresponds to a certain inner
product and is thus usable as a kernel.

Therefore, kernel is a convenient common repre-
sentation for many datatypes. Moreover, different
kernels can be combined in a variety of ways. It
is possible to show that for any two valid kernels
Ki(x,y) and K3(x,y), their sum and product is
also a valid kernel.

The general topic of kernel methods is wide and
deep, and in no way is it possible to cover even a
considerable bit of it in a report like this. For fur-
ther information the reader is referred to excellent
textbooks by Schoelkopf and Smola [22], Shawe-
Taylor and Cristianini [23, 24].

Kernel Methods for Data Fusion

The properties of kernels named above lead to a
natural way of using kernel methods for data fu-
sion: express the different views of the data as
kernel functions K, Ks, ..., Kj, combine them
in a single kernel by taking, say, a weighted sum,
and use this kernel in a suitable classification or
regression algorithm. This strategy was employed
in a work by Pavlidis et al. [11] for inferring gene
functional classifications using the support vector
machine (SVM) linear classification algorithm. For
each gene, the authors had two disparate datasets

at their disposal—microarray expression profile and
phylogenetic conservation data. A separate kernel
was defined for each type of data, the kernels were
added together and used together with SVM for
predictions. The strategy of combining kernels was
reported to perform considerably better than sim-
ple late integration of results.

Even more advanced method is used in the work
by Lanckriet et al. [10], where an expression profile
kernel, 4 sequence-based and 2 protein-interaction-
based kernels were used to predict membrane pro-
teins. The kernels were combined by forming a
linear combination of the form)7, A\ K, and it
is notable that the authors developed a significant
modification of the SVM training algorithm, that
automatically determines the best values for the
weights ;. Naturally, the performance of the com-
bined kernel significantly surpassed that of any in-
dividual kernel.

4 Summary

The article reviewed two very different approaches
to data fusion: Bayes nets and kernel methods.
Both approaches, are truly generic, have well-
developed background theory, a history of success-
ful applications and a considerable base of available
software tools. Not much attention has been given
to actual results obtained by these approaches,
mainly because the author sees more value in de-
scribing the main concepts, than specific applica-
tions. Also, the given description of the concepts is
as minimal as possible because attempts to present
them in better depth would result in significant in-
crease in the length of the text. The article does
not aspire to give an exhaustive overview of all
available data fusion methods: rather generic ap-
proaches such as clustering or decision trees have
been left out. The two selected topics just seemed
to the author to be both mathematically interesting
and practically very promising.

References

[1] H. Ge, Z. Liu, G. M. Church, and M. Vidal.
Correlation between transcriptome and inter-
actome mapping data from Saccharomyces
cerevisiae. Nat Genet, 29(4):482-6, Dec 2001.

[2] A. Grigoriev. A relationship between gene ex-
pression and protein interactions on the pro-
teome scale: analysis of the bacteriophage T7
and the yeast Saccharomyces cerevisiae. Nu-
cleic Acids Res, 29(17):3513-9, Sep 2001.

[3] Christian von Mering, Roland Krause, Berend
Snel, Michael Cornell, Stephen G Oliver, Stan-
ley Fields, and Peer Bork. Comparative assess-
ment of large-scale data sets of protein-protein
interactions. Nature, 417(6887):399-403, May
2002.

[4] E. M. Marcotte, M. Pellegrini, M. J. Thomp-
son, T. O. Yeates, and D. Eisenberg. A com-
bined algorithm for genome-wide prediction of
protein function. Nature, 402(6757):83-6, Nov
1999.

[5] Ronald Jansen, Ning Lan, Jiang Qian, and
Mark Gerstein. Integration of genomic
datasets to predict protein complexes in yeast.
J Struct Funct Genomics, 2(2):71-81, 2002.

[6] A. Nakaya, S. Goto, and M. Kanehisa. Ex-
traction of correlated gene clusters by multiple
graph comparison. Genome Inform Ser Work-
shop Genome Inform, 12:44-53, 2001.

[7] Amos Tanay, Roded Sharan, and Ron Shamir.
Discovering statistically significant biclusters
in gene expression data. Bioinformatics, 18
Suppl 1:5136 44, 2002.

[8] Minghua Deng, Ting Chen, and Fengzhu Sun.
An integrated probabilistic model for func-
tional prediction of proteins. J Comput Biol,
11(2-3):463-75, 2004.

[9] Jyotsna Kasturi and Raj Acharya. Clustering
of diverse genomic data using information fu-
sion. Bioinformatics, 21(4):423-9, Feb 2005.

G.R.G. Lanckriet, N. Cristianini, M.I. Jor-
dan, and W.S. Noble. Kernel-based integra-
tion of genomic data using semidefinite pro-
gramming. In K. Tsuda and J.-P. Vert, edi-
tors, Kernel Methods in Computational Biol-
ogy. MIT Press, 2004.

[10]

[11] Paul Pavlidis, Jason Weston, Jinsong Cai, and
William Stafford Noble. Learning gene func-
tional classifications from multiple data types.

J Comput Biol, 9(2):401-11, 2002.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Olga G Troyanskaya, Kara Dolinski, Art B
Owen, Russ B Altman, and David Botstein.
A Bayesian framework for combining hetero-
geneous data sources for gene function predic-
tion (in Saccharomyces cerevisiae). Proc Natl

Acad Sci U S A, 100(14):8348-53, Jul 2003.

Ronald Jansen, Haiyuan Yu, Dov Green-
baum, Yuval Kluger, Nevan J Krogan, Sam-
bath Chung, Andrew Emili, Michael Sny-
der, Jack F Greenblatt, and Mark Gerstein.
A Bayesian networks approach for predict-
ing protein-protein interactions from genomic
data. Science, 302(5644):449-53, Oct 2003.

Yanjun Qi, Judith Klein-Seetharaman, and
Ziv Bar-Joseph. Random forest similarity
for protein-protein interaction prediction from
multiple sources. Pac Symp Biocomput, pages
531-42, 2005.

Michael A Gilchrist, Laura A Salter, and
Andreas Wagner. A statistical framework
for combining and interpreting proteomic
datasets. Bioinformatics, 20(5):689-700, Mar
2004.

Lan V Zhang, Sharyl L. Wong, Oliver D
King, and Frederick P Roth. Predicting co-
complexed protein pairs using genomic and
proteomic data integration. BMC Bioinfor-
matics, 5:38, Apr 2004.

T. De Bie, P. Monsieurs, K. Engelen, N. Cris-
tianini, B. De Moor, and K. Marchal. Dis-
covering transcriptional modules from motif,
chip-chip and microarray data. January 2005.

Konstantin Tretyakov. A linear model of ge-
netic transcription regulation that combines
microarray and dna sequence data. Bachelor’s
thesis, 2005.

Eugene Charniak. Bayesian networks without
tears. Available in the Internet.

Kevin P. Murphy. An introduction to graphi-
cal models. Available in the Internet, 2001.

Swen Laur. To&enfosuste leidmine bayesi
vorkudes. Andmekaevanduse uurimisseminar
MTAT.03.169, 2003.

22]

23]

[24]

Schoelkopf and Smola. Learning with Kernels.
MIT Press, 2002.

John Shawe-Taylor and Nello Cristianini. Ker-
nel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

Nello Cristianini and John Shawe-Taylor. An
Introduction to Support Vector Machines and
other kernel-base learning methods. Cam-
bridge University Press, 2000.

