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Abstract

The abundance of high-throughput biological data,
such as microarray or protein-protein interaction
assays has lead to a need for new methods of data
analysis, that could infer useful information from
large amounts of very noisy and indirect measure-
ments. One solution could be provided by data fu-
sion. Data fusion is a relatively recent term de-
scribing machine learning methods that can inte-
grate disparate datasets and thus reduce the over-
all noise, increase statistical signi�cance as well as
leverage the interactions and correlations between
the datasets to obtain more re�ned and higher-
level information. This paper gives a very brief
overview of two very general and well-developed
approaches to data fusion�Bayesian networks and
kernel methods. It may therefore be of interest to
a reader not previosly familiar with these terms,
willing to grasp the most basic understanding of
the underlying ideas.

1 Introduction

High-throughput Methods

High-thoughput methods are playing an increasingly
important role in the contemporary biological re-
search. Microarray technologies allow measure-
ments of thousands mRNA transcripts, shotgun-
sequencing has resulted in complete genomes of
several organisms, ChIP-on-chip assays, mass-
spectrometry and yeast-2-hybrid screening pro-
vide insights into protein-DNA and protein-protein
binding properties, etc. Enormous amounts of data
have already been produced using these methods,
and a lot of hope is being put in the possibility of
discovering the relevant biological information from
this data.

All the high-throughput methods, however, share
several common traits, that make data analysis
rather complicated. Firstly, the measurements are
usually indirect. For example, mRNA microarrays
measure the amount of certain mRNA transcripts
for each gene, giving only an indirect indication of
the true value of interest�the amount of protein
produced for each gene. ChIP measurements can
only reveal large regions in the DNA where a given
protein would bind, whereas we are interested in
the speci�c positions. Y2H screens can tell whether
two proteins can participate in the same complex,
while we would like to know whether they can bind
to each other, etc. Secondly, the data produced
is usually very noisy. It is common that two mi-
croarray datasets produced by di�erent laborato-
ries would have correlation close to zero�so large is
the noise in the data. At last, the overall methodol-
ogy of �rst taking some generic measurements and
later trying by any means to �gure out the under-
lying patterns is not very well supported by pure
statistics and requires the use of much more recent
techniques of machine learning.

Data Fusion

Data fusion is one technique that is especially use-
ful for the analysis of high-throughput experiment
data. The idea is that incorporating more than one
genomic dataset in the analysis may be bene�cial,
by reducing the noise, as well as improving statisti-
cal signi�cance and leveraging the interactions and
correlations between the datasets to obtain more
re�ned and higher-level information. Considerable
work has been devoted to the problem of genomic
data fusion. The general approaches can be roughly
divided into three classes: early, intermediate and
late integration.
The simplest idea is that of late integration:

each dataset is treated independently and sepa-
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rate inferences are made. The results obtained in
this way from each dataset can then be converted
to a common form and somehow merged. Such
an approach has been used, for example, to vali-
date gene expression and protein-protein interac-
tion data [1, 2, 3], to infer protein function [4, 5],
or to analyze the gene regulatory graphs resulting
from di�erent datasets [6, 7].

When late integration means combining the out-
puts, early integration methods combine heteroge-
neous input sources in a consistent manner, and
then rely on a single analysis method. The whole
problem is then reduced to �nding a convenient
common representation for di�erent types of data.
For example, if every dataset in question can be
represented as a set of vectors, it is often possi-
ble to concatenate the vectors from the datasets
and feed the combined datapoints into a general-
purpose classi�cation or regression procedure. Dis-
tance metrics, kernels, probability distributions or
graphs are other options for a common data for-
mat. Instances of such an approach have been
used, among others, for protein function prediction
[8, 9, 10, 11, 12], to infer protein-protein interac-
tions [13, 14] and protein complexes [15, 16].

At last, intermediate integration corresponds to
methods that don't clearly fall under the title of
either early or late integration. These usually use a
custom statistical procedure for combining speci�c
kinds of data in data-dependent ways. For exam-
ple, rather common are the approaches that infer
regulatory motifs by clustering genes by their ex-
pression pro�les and searching for overrepresented
substrings in the DNA sequences of the genes in
a cluster. Another common scenario is functional
annotation of gene clusters by analyzing them for
overrepresented GO categories. Other examples in-
clude methods for locationg transcriptional mod-
ules [17] and transcription factor bindings [18].

Of the three named classes, early integration
methods seem particularly interesting for they of-
ten scale to integrating nearly any number of nearly
arbitrary kinds of data in a systematic and consis-
tent manner. This article brie�y reviews two ap-
proaches to early integration: Bayesian networks
and kernel methods.

2 Bayesian networks

Bayesian network is a graphical probabilistic
model, that allows to combine disparate evidence
with prior knowledge of interrelations within the
data to produce a single probabilistic answer. The
idea is easy to explain on a series of examples.
Consider the question of whether two given pro-
teins interact or not. Suppose we cannot determine
this fact directly, but we have microarray expres-
sion pro�les of the genes at our disposal. It might
be reasonable to assume that interacting genes are
more likely to have similar expression. We can de-
scribe this belief as a set of conditional probabili-
ties:

P (similar expression | interaction) := P (E | I) = 0.7
P (similar expression |no interaction) := P (E | − I) = 0.4

Once we determine that two genes have similar ex-
pression, we can calculate, using the Bayes rule, the
probability of them interacting:

P (I |E) =
P (E | I)P (I)

P (E)
=

P (E | I)P (I)
P (E | I)P (I) + P (E | − I)P (−I)

where P (I) indicates our prior belief in the fact
that two proteins interact. Choosing P (I) =
0.5 would mean that we are completely uncertain
about whether the interaction takes place or not.
By plugging this prior in the formula, we obtain
P (I |E) ≈ 0.64, which indicates some degree of
con�dence in the fact that proteins indeed inter-
act.
We could graphically display the employed com-

putation scheme in the following way:

interaction

expression

The graph indicates the causality structure that,
we believe, underlies the phenomenon of interest:
interaction causes similar expression. We can plug-
in our knowledge of similar expression and obtain
the resulting probability of interaction.
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But suppose now that besides the microarray
dataset, we also posess data of a Y2H screening
experiment. Again, it is reasonable to assume that
interacting proteins are highly likely to report Y2H
binding:

P (Y2H binding | interaction) := P (Y | I) = 0.9
P (Y2H binding |no interaction) := P (Y | − I) = 0.3

Suppose the Y2H data reported no binding. Can
we combine this evidence with previous microarray
data to re�ne our knowledge of interaction proba-
bility?

P (I | − Y,E) =
P (−Y,E | I)P (I)

P (−Y, E)

As you see, not unless we know the combined con-
ditional distribution P (Y, E | I). However, it may
be reasonable to assume that Y2H binding results
and microarray results are conditionally indepen-
dent, given the knowledge about their interaction.
That is, if we knew whether proteins really inter-
acted or not, the Y2H binding result would not pro-
vide any additional information about the possible
microarray result. In this case,

P (−Y,E | I) = P (−Y | I)P (E | I)

and we can continue the calculation to obtain
P (I | − Y,E) = 0.2. As you see, the negative Y2H
evidence strongly in�uenced our posterior belief.
As before, we can visualize the structure of our

beliefs as a directed graph:

interaction

expression Y2H binding

The graph reads: interaction causes certain ex-
pression and Y2H results, but these two types of
results are independent, if their cause (i.e. interac-
tion) is known. In order to use the graph, we feed
in our knowledge of actual expression and Y2H re-
sults, propagate the probabilities and obtain the
posterior probability of proteins interacting.

Now we might note that Y2H results are actually
more in�uenced by the fact that genes can partic-
ipate in the same complex, we could therefore add
another causal relationship:

interaction

expression Y2H binding

same complex

In this case the Y2H result depends on both
the interaction and the ability to participate in the
same complex. To specify such network, we should
provide the probabilities P (Y | I, C) for each pair
(I, C) (where C stands for participation in the same
complex ). We could use the network in the same
manner as before: by feeding the known inputs Y
and E and receiving the outputs I and C. In fact,
we can feed any set of known variables as inputs and
obtain the posterior distribution of the remaining
variables.
Much more complex networks can be constructed

in this manner, that would be able to combine data
in a variety of sophisticated ways. And although in
most common applications a Bayesian network is
designed with a help of an expert, algorithm exist
that can automatically infer network topology from
data. The major drawback of Bayesian networks is
their computational cost: evaluation of networks
with complicated topologies can take exponential
time. However, evaluation of simple tree-like net-
works is always e�ective.
The topic of Bayesian networks is very wide:

extensive literature exists covering the (rather
nontrivial) questions of e�ective network evalua-
tion, training and statistical inference. A simple
overview can be obtained in [19, 20, 21] as well as
in special textbooks on the topic.

Bayesian Networks for Data Fusion

It should be clear now that the Bayesian network
formalism is very convenient for integrating dis-
parate genomic datasets. And, indeed, some work
has been done in this area. For example, Jansen
et al. [13] designed a Bayesian network for predic-
tion of protein-protein interactions, that combines
experimental interaction data, mRNA expression
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and GO annotations into predictions, whose relia-
bility is superior to those made on the basis of any
single dataset alone.
In another similar work by Troyanskaya et al.

[12], a tree-like Bayesian network was designed for
purposes of gene function prediction. The network
combined di�erent experimental measurements of
coexpression, colocalization, physical and genetic
associations to predict functional associations of
genes. Again, it turned out that results of the com-
bined analysis allowed to produce much more con-
�dent functional gene annotations.

3 Kernel Methods

Several machine learning methods, such as linear
regression or linear classi�cation, although initially
de�ned as methods for classifying vectors from Rm,
are actually applicable to a much wide range of
datatypes. Take, for example, ordinary linear re-
gression. The problem is often stated in a way sim-
ilar to the following:

Given a set of labeled vectors

{(xn, yn),xn ∈ Rm, y ∈ R, n ∈ 1 . . . N},

�nd a linear discriminator function

fw(x) = 〈w,x〉,

that minimizes the sum of error squares∑
n

(fw(xn) − yn)2.

It is possible to show that the solution vector w
can be expressed as a linear combination of initial
datapoints:

w =
∑

n

αnxn ,

and the resulting function can thus be expressed as

fα(x) =

〈∑
n

αnxn,x

〉
=

∑
n

αn〈xn,x〉,

which allows to rephrase the original problem in
terms of values αn:

Given a set of labeled vectors, �nd such α for
which the function fα has the least possible
sum of error squares.

It is notable, that in this new formulation, the
fact that xn are actually vectors is only needed
to make sense of the inner product operation 〈·, ·〉.
That is, the formulation now actually admits any
datatype, for which we can de�ne a notion of inner
product, which in this context is often referred to
as a kernel function. The case of linear regression
is not exceptional�pretty much any linear algo-
rithm can be kernelized, i.e. represented in such
a way that the only operation performed with the
datapoints is evaluation of the inner product.
Surprisingly, several di�erent kernel functions

have been de�ned even for such complex datatypes
as strings or graphs. One simple example of an
inner product de�ned on strings is given by the k-
mer kernel : we can transform each string to a vec-
tor where each element counts the number of oc-
curences of a certain k-mer in the string and then
calculate inner products of such vectors. A kernel
must not necessarily be de�ned as an explicit in-
ner product of some vectorized form of the data.
It is possible to show that any positive semide�-
nite function K(x,y) corresponds to a certain inner
product and is thus usable as a kernel.
Therefore, kernel is a convenient common repre-

sentation for many datatypes. Moreover, di�erent
kernels can be combined in a variety of ways. It
is possible to show that for any two valid kernels
K1(x,y) and K2(x,y), their sum and product is
also a valid kernel.
The general topic of kernel methods is wide and

deep, and in no way is it possible to cover even a
considerable bit of it in a report like this. For fur-
ther information the reader is referred to excellent
textbooks by Schoelkopf and Smola [22], Shawe-
Taylor and Cristianini [23, 24].

Kernel Methods for Data Fusion

The properties of kernels named above lead to a
natural way of using kernel methods for data fu-
sion: express the di�erent views of the data as
kernel functions K1, K2, . . . , Kk, combine them
in a single kernel by taking, say, a weighted sum,
and use this kernel in a suitable classi�cation or
regression algorithm. This strategy was employed
in a work by Pavlidis et al. [11] for inferring gene
functional classi�cations using the support vector
machine (SVM) linear classi�cation algorithm. For
each gene, the authors had two disparate datasets
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at their disposal�microarray expression pro�le and
phylogenetic conservation data. A separate kernel
was de�ned for each type of data, the kernels were
added together and used together with SVM for
predictions. The strategy of combining kernels was
reported to perform considerably better than sim-
ple late integration of results.
Even more advanced method is used in the work

by Lanckriet et al. [10], where an expression pro�le
kernel, 4 sequence-based and 2 protein-interaction-
based kernels were used to predict membrane pro-
teins. The kernels were combined by forming a
linear combination of the form

∑
k λkKk, and it

is notable that the authors developed a signi�cant
modi�cation of the SVM training algorithm, that
automatically determines the best values for the
weights λk. Naturally, the performance of the com-
bined kernel signi�cantly surpassed that of any in-
dividual kernel.

4 Summary

The article reviewed two very di�erent approaches
to data fusion: Bayes nets and kernel methods.
Both approaches, are truly generic, have well-
developed background theory, a history of success-
ful applications and a considerable base of available
software tools. Not much attention has been given
to actual results obtained by these approaches,
mainly because the author sees more value in de-
scribing the main concepts, than speci�c applica-
tions. Also, the given description of the concepts is
as minimal as possible because attempts to present
them in better depth would result in signi�cant in-
crease in the length of the text. The article does
not aspire to give an exhaustive overview of all
available data fusion methods: rather generic ap-
proaches such as clustering or decision trees have
been left out. The two selected topics just seemed
to the author to be both mathematically interesting
and practically very promising.
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