
Kernel Methods for Pattern Analysis

Project Report

Konstantin Tretyakov, Jelena Zaitseva

24. november 2004

General Notes

The assigments of the project were implemented in SciLab1, as it was the closest
freeware alternative to Matlab. We also developed a small standalone C++
application for cross-language retrieval just for the fun of it (and also in order
to have an excuse for doing the project together). Code for kernel calculations
is also written in C++.

We used the English and German versions of the Finnish constitution for
the cross-language retrieval task, and the English version for the multiclass
classification task.

The report is accompanied by lots of files organized in four directories.

• The kernelmethods/ directory contains the SciLab sources for all the
algorithms (apart from kernel computations).

• The crosslang/ directory contains the C++ source code of the stan-
dalone application for cross-language retrieval. In particular, code for
kernel computations is there.

• Directory reports/ contains algorithm precision summaries and images
of kernels.

• data/ contains the data used.

Task 1: Evaluating the 3-mer kernel

For the subroutine to evaluate the k-mer kernel on a set of strings see function
KMerKernel::getKernelMatrix in crosslang/src/Kernels.cpp.

The subroutine implicitly traverses a trie structure of all k-mers and for
each node of the trie tracks all the positions in all the strings, where a k-mer,
corresponding to that node ends. Such an approach allows to calculate the whole
kernel matrix in approximately O(Akn+ ln) time, where A is the alphabet size,

1http://www.scilab.org

1

http://www.scilab.org


n is the number of strings and l the length of each string. For k = 3 and n = 262
the speedup over a naive O(lkn2) implementation is substantial.

The plot of the resulting kernels are in files K_3mer.gif and K_bow.gif in
the reports/ directory. There are also plots of the normalized and centered
versions of the kernels in K_3mer_nc.gif and K_bow_nc.gif. One may note
the block structure in all cases.

We tried using the kernels with all combinations of normalization and center-
ing, and results indicated nearly no difference in resulting precision. However,
when both centering and normalization was used, the precision of cross-language
retrieval was good for wider range of algorithm parameters
(see reports/K_3mer_cca_results.txt).

Task 2: CCA Cross-Language Retrieval

We chose he range of values for the number of components k as 5, 10, 20, 50,
80. The range of values for the regularization parameter r was 0.001, 0.01, 0.1,
1, 10.

In case of a normalized and centered 3-mer kernel the best cross-validation
precision was attained at k = 20, r = 0.01. The corresponding test precision
was 0.96 (i.e. the test error was 1 − 0.96 = 0.4 = 4%). Of course, the results
depend a bit on the way the random split into test/training data was made.

Detailed reports for both the BoW and 3-mer kernels with all combinations
of centering and normalization are in files reports/K_3mer_cca_results.txt
and reports/K_bow_cca_results.txt.

The code for the kRCCA algorithm is in the kernel_rcca function in the
file kernelmethods/kernel_crosslang.sci. The code for the whole task (the
cross-validation, basically) is available in the
kernelmethods/cross_language_retrieval.sce file. This file may be exe-
cuted in SciLab to obtain a report similar to those mentioned before.

Task 3: Kernel Adatron for Multiclass Classifica-
tion

The table showing the dependence of the cross-validation precision on the choice
of the regularization parameter C is presented in the files
reports/K_3mer_multiclass_results.txt and
reports/K_bow_multiclass_results.txt for 3-mer and BoW kernels corre-
spondingly.

In case of a BoW kernel (normalized, not centered), the optimal C was
determined by cross-validation as 10 or 100 for AvA, and 0.001, 0.01, 0.1 or 1
for OvA. (The range of C values tested was 0.0001, 0.001, 0.01, 0.1, 1, 10, 100).

In case of AvA, the value of the regularization parameter found by cross-
validation maximised also the test precision, which was equal to 0.77.

2



In case of OvA, the test precision corresponding to found C was 0.72, whereas
for C = 10 or C = 100 it was higher: 0.82.

The code for the kernel adatron algorithm is in the kernel_adatron function
in the file kernelmethods/kernel_multiclass.sci. The script that was used
to do the cross-validation and produce the reports is in the file
kernelmethods/multiclass_classification.sce.

3


