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General Notes

The assigments of the project were implemented in SciLab1, as it was the closest
freeware alternative to Matlab. We also developed a small standalone C++
application for cross-language retrieval just for the fun of it (and also in order
to have an excuse for doing the project together). Code for kernel calculations
is also written in C++.

We used the English and German versions of the Finnish constitution for
the cross-language retrieval task, and the English version for the multiclass
classification task.

The report is accompanied by lots of files organized in four directories.

• The kernelmethods/ directory contains the SciLab sources for all the
algorithms (apart from kernel computations).

• The crosslang/ directory contains the C++ source code of the stan-
dalone application for cross-language retrieval. In particular, code for
kernel computations is there.

• Directory reports/ contains algorithm precision summaries and images
of kernels.

• data/ contains the data used.

Task 1: Evaluating the 3-mer kernel

For the subroutine to evaluate the k-mer kernel on a set of strings see function
KMerKernel::getKernelMatrix in crosslang/src/Kernels.cpp.

The subroutine implicitly traverses a trie structure of all k-mers and for
each node of the trie tracks all the positions in all the strings, where a k-mer,
corresponding to that node ends. Such an approach allows to calculate the whole
kernel matrix in approximately O(Akn+ ln) time, where A is the alphabet size,

1http://www.scilab.org
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n is the number of strings and l the length of each string. For k = 3 and n = 262
the speedup over a naive O(lkn2) implementation is substantial.

The plot of the resulting kernels are in files K_3mer.gif and K_bow.gif in
the reports/ directory. There are also plots of the normalized and centered
versions of the kernels in K_3mer_nc.gif and K_bow_nc.gif. One may note
the block structure in all cases.

We tried using the kernels with all combinations of normalization and center-
ing, and results indicated nearly no difference in resulting precision. However,
when both centering and normalization was used, the precision of cross-language
retrieval was good for wider range of algorithm parameters
(see reports/K_3mer_cca_results.txt).

Task 2: CCA Cross-Language Retrieval

We chose he range of values for the number of components k as 5, 10, 20, 50,
80. The range of values for the regularization parameter r was 0.001, 0.01, 0.1,
1, 10.

In case of a normalized and centered 3-mer kernel the best cross-validation
precision was attained at k = 20, r = 0.01. The corresponding test precision
was 0.96 (i.e. the test error was 1 − 0.96 = 0.4 = 4%). Of course, the results
depend a bit on the way the random split into test/training data was made.

Detailed reports for both the BoW and 3-mer kernels with all combinations
of centering and normalization are in files reports/K_3mer_cca_results.txt
and reports/K_bow_cca_results.txt.

The code for the kRCCA algorithm is in the kernel_rcca function in the
file kernelmethods/kernel_crosslang.sci. The code for the whole task (the
cross-validation, basically) is available in the
kernelmethods/cross_language_retrieval.sce file. This file may be exe-
cuted in SciLab to obtain a report similar to those mentioned before.

Task 3: Kernel Adatron for Multiclass Classifica-
tion

The table showing the dependence of the cross-validation precision on the choice
of the regularization parameter C is presented in the files
reports/K_3mer_multiclass_results.txt and
reports/K_bow_multiclass_results.txt for 3-mer and BoW kernels corre-
spondingly.

In case of a BoW kernel (normalized, not centered), the optimal C was
determined by cross-validation as 10 or 100 for AvA, and 0.001, 0.01, 0.1 or 1
for OvA. (The range of C values tested was 0.0001, 0.001, 0.01, 0.1, 1, 10, 100).

In case of AvA, the value of the regularization parameter found by cross-
validation maximised also the test precision, which was equal to 0.77.
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In case of OvA, the test precision corresponding to found C was 0.72, whereas
for C = 10 or C = 100 it was higher: 0.82.

The code for the kernel adatron algorithm is in the kernel_adatron function
in the file kernelmethods/kernel_multiclass.sci. The script that was used
to do the cross-validation and produce the reports is in the file
kernelmethods/multiclass_classification.sce.
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