
Kernel Methods for Pattern Analysis: Project

John Shawe-Taylor Tijl De Bie

October 21, 2004

Abstract

The project should take about 30 hours. It should be handed in by
email to Eerika Savia (Eerika.Savia@hut.fi) at the latest on Sunday
November 28th.

By now, you probably have a good idea of the power of kernel methods.
On the one hand, a large choice of fast pattern analysis algorithms can be
used for a variety of tasks going from classification over novelty detection to
regression. On the other hand a wide range of data types can be dealt with
using kernel functions that are specialized for the data and the problem at
hand. Furthermore, subspace methods such as PCA and CCA allow to select
interesting features from the data. This modular approach to pattern analysis
is one of the most crucial aspects of kernel methods.

In this project, you will work out a case study during which you will be able
to fully appreciate this modularity. Basically all the algorithms and one of the
two kernels to be used in this project have already been implemented in the
practical sessions. Reuse these where possible. . .

1 The data

The data you will work with are the articles of the Finnish constitution, available
both in Finnish and in Swedish on the website http://www.om.fi/21910.htm.
Extract the different articles from the constitution (you can do this in matlab
or in perl or by hand in a text editor,. . . whatever you like), and load them into
matlab (or into R if you prefer). In matlab, it’s probably most convenient to
store the articles in a cell array.

2 The tasks to solve

There are two main tasks in the project:

• Cross-language retrieval of articles. Using a subset of articles in
both languages that are translations of each other (the training set), train
a query system that after training is capable to select (from a corpus of
Swedish texts) a Swedish text that is relevant to (or semantically related

1



with) a given Finnish query text, that is not necessarily an exact transla-
tion.

• Classification of articles according to the chapter they belong
to. Since there are 13 different chapters in the constitution, this will be
a so-called multi-class classification problem (in fact we will only use 9 of
these chapters here). There are several ways to do this as will be explained
further down in this text.

3 The kernels

There exist various kernels designed for strings and text, a few of which were
discussed and used during the classes and practical sessions. In this project you
will use two of them: the bag of words kernel and the 3-mer kernel.

Keep in mind that in order to use a bag of words kernel, actually a few
preprocessing steps have to be performed first: usually the words are stemmed
(which means that e.g. English words like ‘go’, ‘gone’ and ‘went’ all would
be considered to be the same), and stop words are removed. You are free to
do this, however it is not required for the project, you might even wonder if
it’s appropriate to do this in a language like Finnish. For both the bag of
words kernel and the 3-mer kernel the case of the letters should be ignored
(this is a requirement of the project). Also make sure you remove numbers and
punctuation before applying the kernels.

Implement these kernels, and run them on both the Finnish and Swedish
version of the constitution.

To report 1 Explain which additional preprocessing operations you performed
on the kernel matrix, if any, and why. Plot of the resulting kernels evaluated
between all Finnish and Swedish documents (in matlab using the imagesc func-
tion).
Additionally, hand in the code for the 3-mer kernel.

4 The algorithms

4.1 Cross-language article retrieval

For the cross-language retrieval of articles, randomly select a training set of 80%
of the Finnish articles, and the corresponding Swedish articles. Since we want
to build a system that responds with the corresponding Swedish article given
a certain Finnish article, we would like to get a representation of each of these
articles that does not depend on the language or vocabulary, but that rather
represents the meaning of the articles.

In order to extract such a representation, you can perform kCCA between
both languages. Then each kCCA component corresponds to a feature capturing
part of the semantics of the texts. Therefore, for Finnish and Swedish texts that

2



are translations of each other, the features corresponding to dominant canonical
components will be likely to be similar (since their meaning should be close to
identical).

We will thus proceed as follows.

1. The training phase: perform kCCA on the training set; select the k dom-
inant canonical components. Normalize the dual vectors αx and αy such
that, with Kx and Ky the matrices corresponding to the training sam-
ple, α′xK

2
xαx = 1 and α′yK

2
yαy = 1. The projections of a text on these

components are the (hopefully) language independent features we will use.

2. The query phase:

a For each article in the test set, compute its projection on these canon-
ical component directions. Do this for both languages on their re-
spective canonical components. This is the semantic feature repre-
sentation of the test set articles.

b Thus, when one of these Finnish articles (from the test set) is queried,
you can look up its semantic feature representation. Then, among all
Swedish test set articles, look for that article whose semantic feature
representation is closest to that of the Finnish article (you can use
the Euclidian distance for this). This will then be outputted as the
translated version.

In order to assess the performance, compute how often the translated version
was found as the best match. Additionally, compute how often the translated
text was within the top 5 of best matches.

Note there are two parameters to be tuned in the training phase: the number
of canonical components (i.e. the number of features in the semantic feature
representation), and the regularization parameter of the kCCA algorithm. Both
can be trained using cross-validation.

To report 2 Make a (small, say, 5 by 5) table of cross-validation errors for a
range of values for the regularization parameter and the number of kCCA com-
ponents. Mention which parameter setting leads to the smallest cross-validation
error, and what the corresponding test set error is.
Additionally, hand in the code for the CCA algorithm.

4.2 Classification of the articles

Here we will only use the Finnish version of the constitution, and only the bag of
words kernel. Do not center the kernel, but do normalize it. (This is important
because the kernel adatron algorithm is only guaranteed to converge when the
diagonal elements of the kernel matrix are not too different from inverse of the
coordinate ascent step size η. You can take η = 1 here.)

3



As you can see, the articles are organized into chapters. The goal of this
exercise is to make a classifier that classifies the articles into the right chapter.
Because each of the classes has to be reasonably large for a machine learning
algorithm to work, you can omit the 4 smallest chapters from the data set for
this part of the project. Thus, 9 chapters remain: chapters 2, 3, 4, 5, 6, 7, 9, 10,
11 and 12. Now, randomly select a stratified training set containing roughly 80%
of the articles. ‘Stratified’ means that for each class, the test sample contains
(up to a rounding error) 20% of the samples of that class.

In the lectures, you only learned how to do binary classification, using an
SVM, kFDA, the kernel adatron,. . . Luckily, a 9-class (or in general multi-class)
classification problem can be reduced to a set of binary classification problems
in the following ways (there exist other approaches too):

• Perform 9 binary classification problems, each of which learns to distin-
guish one of the 9 classes (denoted as the positive class) against the other
8 (together named the negative class).
To estimate the class of a test article, compute the prediction of each of
the 9 binary classifiers. The one that returns the largest value tells you in
which class to classify the test sample at hand. This type of multi-class
classification is called one-versus-all (OvA).

• Perform 9·8
2 = 36 binary classification problems, each of them classifying

one of the 9 classes against one of the remaining 8.
To estimate the class for a test sample, evaluate each of the 36 classifiers.
In this way, for each of the 9 classes you will get 8 scores. The class getting
the largest sum of scores for the test sample is the class it will be assigned
to. This type of multi-class classification is referred to as all-versus-all
(AvA).

Implement both the OvA and the AvA schemes using the kernel adatron.
To tune the regularization parameter there are two options. The first approach
would be to tune it optimally within each binary classification problem. How-
ever, some of the chapters are so small that cross-validation is difficult to do:
in some of the ‘folds’, the small class may well be empty in the validation
set. Therefore, you can choose for the other option in this case: use the same
regularization parameter for all binary classification problems, and tune it in
such a way that the cross-validation error on the final multi-class classification
problem is minimal. In this exercise, you could use the so-called leave-one-out
cross-validation, which is essentially n-fold cross-validation, where n is the size
of the training set. (If your computer is too slow, use 10-fold cross-validation.)

(Note: also in the multi-class case, the error is usually defined as the fraction
of misclassified points. Note that since we are having 9 classes, everything better
than 8/9 classification error is in some sense better than random. . . )

To report 3 Show a small table containing the cross-validation error for a
range of values for the regularization parameter, and this both for the OvA and
the AvA schemes. Indicate which value is optimal, and compute the corre-
sponding test set error. Also compute the test set error corresponding to other

4



regularization parameter settings, and put it in a table. This allows you to check
in how far the cross-validation succeeded in finding the optimal value.
Additionally, hand in your code for the multi-class classification, and the code
for the kernel adatron.

5


