KPascal Compiler

1 Introduction

The following is a brief description of the KPascal compiler project – a compiler from a Pascal-like language KPascal into a P-Code-like intermediate language KP-Code. An interpreter for the intermediate language is also available. The project was given as an assignment on the “Compilers” course and is implemented using Borland™ Delphi 6.

Please note that this document was not originally created to provide explanations or comments on the implementation of the compiler, but was used by me for development purposes (to make things like language specification and data structures used clear to me). So it’s not intended to be of use to anyone else except me. For theoretical information on compilers please refer to literature listed in section 6 Literature.

2 Source Language

2.1 Language Features

The source language is a subset of Pascal. The missing features are units, external procedures, dynamic arrays, typed constants, array/record constants, variant records, lots of types (enumerated, subrange, set, procedure, file, fixed-length string), with, case and maybe more …

The supported built-in types are:

· Integer
– 32 bit signed integer.

· Real

– 64 bit floating point.

· Boolean
– True or False, 8 bit.

· String

– a Pascal-string (max 255 characters).

· Pointer

– a 32 bit pointer.

2.2 Formal Grammar

The grammar is specified in EBNF with the following conventions:

· Terminals are in lowercase bold, nonterminals – in italic. Lexeme classes (“identifier”, “number”, etc) are underlined.

· * (an asterisk) means closure (the item may be repeated 0 or more times)

· + token (superscript plus and a separator token) means chaining (one or more items separated with the specified token)

· [] (square brackets (normal font, not bold)) – option (the item in brackets may be missing)

· {} (curly brackets) are used to group symbols

· | (vertical bar) means choice (either one or another item may be used)

Now the grammar itself:

Program ([program Ident ;] Block .
Block ({DeclSection ;}* CompoundStmt
DeclSection (LabelDeclSection | ConstSection | TypeSection | VarSection | ProcedureDeclSection
LabelDeclSection (label LabelId + ,
ConstSection (const ConstantDecl + ;
ConstantDecl (Ident = ConstExpr
TypeSection (type TypeDecl + ;
TypeDecl (Ident = Type
Type (TypeId | ArrayType | RecType | PointerType
ArrayType (array [{ConstIntExpr .. ConstIntExpr}+ ,] of Type
RecType (record [FieldDecl + ;] end
FieldDecl (Ident + , : Type
PointerType (^ TypeId
VarSection (var VarDecl + ;
VarDecl (Ident + , : Type
ProcedureDeclSection (ProcedureDecl | FunctionDecl
ProcedureDecl (procedure ProcedureHead ; { Block | forward }

FunctionDecl (function ProcedureHead : TypeId ; { Block | forward }

ProcedureHead (Ident [FormalParameters]

FormalParameters (([FormalParm + ;])
FormalParm ([var] Parameter
Parameter (Ident + , : TypeId

CompoundStmt (begin [Statement + ;] end
Statement ({ LabelId :}* [Assignment | GotoStmt | ProcCall | StructStmt]

Assignment (Designator := Expression
GotoStmt (goto LabelId
ProcCall (Ident [([Expression + ,])]

StructStmt (CompoundStmt | IfStmt | RepeatStmt | WhileStmt | ForStmt

IfStmt (if Expression then Statement [else Statement]

RepeatStmt (repeat [Statement + ;] until Expression
WhileStmt (while Expression do Statement
ForStmt (for Ident := Expression { to | downto } Expression do Statement
Expression (SimpleExpression + RelOp
SimpleExpression ([+ | –] Term + AddOp
Term (Factor + MulOp
Factor ({ Designator [([Expression + ,])] } | { @ Designator } | Number | Boolean | String | nil | { (Expression) } | { not Factor }

RelOp (> | < | <= | >= | = | <>
AddOp (+ | - | or | xor
MulOp (* | / | div | mod | and | shl | shr
Designator (Ident { { . Ident } | { [Expression + ,] } | ^ }*

ConstExpr (Expression

ConstIntExpr (Expression
TypeId ((type-) identifier
Ident (identifier
LabelId ((label-) identifier
Number (number (integer/real)
Boolean (boolean (true | false)
String (string (for example: ‘string line1’#13#10’string line 2’)

2.3 Lexemes

Terminal alphabet corresponding to the above grammar specification:

;
:
,
.
[
]
(
)
:=
^
@
..

=
>
<
>=
<=
<>
+
–
*
/
or
xor

div
mod
and
shl
shr
not
nil

forward

label
const
type
var
begin
end
if
then
else
for
to
downto

do
while
repeat
until
array
of
program
procedure
function

goto
record

identifier
number(integer)
number(real)
string
boolean
3 Destination Language

The destination language (KP-Code) is an assembler-like language for a hypothetical machine (KP-Machine) that is easily interpreted and allows easy compilation from KPascal. Organization of the KP-Machine is close to that of a well-known “P-Machine”. KP-Code, in turn, evolved from “P-Code”.

3.1 Organization of the KP-Machine

The KP-Machine has two kinds of memory (for data and code) and 2 registers.

· Data memory, called STORE, consists of linearly organized bytes and is addressed by 32-bit addresses. Data memory contains all data, found in program (variables, procedure parameters, etc..) and is used in a stack-like manner with the help of the MP and SP registers. The first address of data memory is 0.

· Program memory, called CODE, consists of linearly organized cells, containing a sequence of KP-Code commands. The first cell’s address is 0. Normally, execution of a KP-Code program starts by executing command at cell 0.

· MP register is a 32 bit signed integer used to point to the beginning of the topmost stack frame in the data memory. At the beginning of normal program execution (after executing the INIT command) MP is set to 0.

· SP register – points to the last used byte of data memory.

· PC register is an instruction counter contains a 32-bit address of the instruction to be executed next.

3.2 Stack Frames and Procedure Calls

To allow recursion and nested scopes in KPascal, memory usage of a compiled KPascal program is organized in “stack frames”. Each procedure or function always executes in its own stack frame, the beginning of which is pointed to by the MP register. To call another procedure you need to prepare a stack frame for that procedure and then use the CALL instruction.

The format of a stack frame is the following:

	Return Value (SizeOf(Result))
	Static Link (4 bytes)
	Dynamic Link (4 bytes)
	Return Address (4 bytes)
	Parameters, Local Variables
	Free Memory…

The beginning of a stack frame is the static link field and it is pointed to by the MP register.

Static link points to the beginning of a procedure, immediately surrounding the current procedure and is used to address non-local variables. Dynamic link is a pointer to the beginning of a procedure, which called the current procedure and is used together with the return address to return from current procedure.

Thus, a call to another procedure is compiled in the following way:

1. Memory for the function result is left on the stack, SP := SP + SizeOf(Function result)

2. Static link is put to the stack, STORE[SP+1..SP+4] := Static Link; SP := SP + 4

3. Dynamic link (current value of MP) is put to the stack, STORE[SP+1..SP+4] := MP; SP := SP + 4

4. Return address (PC plus number of instructions until the JUMP) is put to the stack, STORE[SP+1..SP+4] := PC+n; SP := SP+4

5. Procedure parameters are pushed onto stack

6. MP is set to point to the new stack frame, MP := SP – SizeOf(Parameters) – 11

7. JUMP instruction is executed

8. The called procedure now initializes its local variables (that is, leaves space on the stack for them increasing SP appropriately)

9. The code of the procedure is executed

10. The procedure returns using the RET instruction, restoring the previous state of the machine: SP := MP – 1; PC := STORE[MP+8..MP+11]; MP := STORE[MP+4..MP+7]

11. The result of the function is now left on the stack. If it was a procedure, then SizeOf(Result) = 0 and nothing is left there.

The main program itself has its own stack frame, which is initialized with the INIT instruction.

Because the program has no return value, the first item in its stack frame is the static link, which is equal to –1. Dynamic link and return address are set to –1 also. Calling a RET instruction when in the stack frame of the main program interrupts program execution (which is the same as executing the HALT instruction).

3.3 Instruction Set of the KP-Machine

Here is a list of all instructions of KP-Code with brief explanations of their effect:

	Instruction
	Meaning
	Explanation

	
	Operations with registers
	

	INIT
	MP := 0

STORE[MP .. MP+3] := -1

STORE[MP+4 .. MP+7] := -1

STORE[MP+8 .. MP+11] := -1

SP := 11
	Initializes the stack frame for main program. Should be used as the first instruction of the program.

	SETMP intval
	MP := SP – intval
	This instruction is used to prepare new stack frame when calling procedures.

	INCSP intval
	SP := SP + intval
	Adds a specified integer value (possibly negative) to SP.

	
	Operations with STORE
	

	PUSHMP
	STORE[SP+1 .. SP+4] := MP

SP := SP + 4
	Puts the value of the MP register on top of the stack.

	PUSHPC intval
	STORE[SP+1 .. SP+4] := PC + intval

SP := SP + 4
	Puts the value of (PC + intval) on top of stack.

	PUSHINT intarg
	STORE[SP+1 .. SP+4] := intarg

SP := SP + 4
	The specified Integer argument is pushed on top of stack.

	PUSHREAL realarg
	STORE[SP+1 .. SP+8] := realarg

SP := SP + 8
	A Real is pushed onto stack.

	PUSHBOOL boolarg
	STORE[SP+1] := boolarg

SP := SP + 1
	Analogously, a Boolean is pushed on stack.

	PUSHSTR strarg
	STORE[SP+1 .. SP+256] := strarg

SP := SP + 256
	… a String is pushed on stack

	STO size
	Addr := STORE[SP–size–3 .. SP–size]

STORE[Addr .. Addr+size–1] :=

 STORE[SP–size +1..SP]

SP := SP – size – 4
	Copies size (where size is the argument) topmost bytes on the stack to the location pointed by the address below these bytes on stack. Used to perform assignments.

	DEREF size
	Addr := STORE[SP – 3..SP]

STORE[SP–3 .. SP–4+size] :=

 STORE[Addr .. Addr+size–1]

SP := SP – 4 + size
	Dereferences a pointer: removes it from top of stack and pushes there size number of bytes referenced by it.

	DUP size
	STORE[SP+1 .. SP+size] :=

 STORE[SP–size+1 .. SP]

SP := SP + size
	Duplicates the topmost size bytes of stack.

	SWAP size
	STORE[SP–size+1 .. SP] :=:

 STORE[SP–2*size+1 .. SP–size]
	Swaps two topmost blocks of size size

	SWAPINTREAL
	RealVal := STORE[SP–7 .. SP]

IntVal := STORE[SP–11 .. SP–8]

STORE[SP–11 .. SP–4] := RealVal

STORE[SP–3 .. SP] := IntVal

	Pops a Real and then an Integer from the stack and puts them back in the reversed order. This command is useful when compiling comparisons like

 Int <> Real

	
	Flow control
	

	HALT
	PC := -1
	Halts program execution.

	RET
	SP := MP – 1

PC := STORE[MP+8 .. MP+11]

MP := STORE[MP+4 .. MP+7]
	Returns from a procedure or function removing its stack frame from STORE. Function result is, however, left on stack. If RET is called in programs main stack frame (created by INIT) then PC is assigned –1 and program halts.

	JUMP addr
	PC := addr
	Proceeds program execution from a specified address. If addr equals –1 then halts.

	JIFF addr
	SP := SP – 1

if STORE[SP + 1] = 0 then PC := addr
	Removes the topmost boolean from the stack and performs a jump if it was False.

	
	Comparisons
	

	GTINT
	if STORE[SP–7 .. SP–4] >

 STORE[SP–3 .. SP]

then STORE[SP–7] := True

else STORE[SP–7] := False

SP := SP – 7
	Removes the two topmost integers from stack (say, A and B, where B was the topmost), and pushes a boolean value of comparison A > B.

	LTINT
	if STORE[SP–7 .. SP–4] <

 STORE[SP–3 .. SP]

then STORE[SP–7] := True

else STORE[SP–7] := False

SP := SP – 7
	Same as above, only the comparison is A < B.

	GEINT
	….. >=
	…… A >=B

	LEINT
	….. <=
	…… A <=B

	NEINT
	….. <>
	…… A <>B

	EQINT
	….. =
	…… A =B

	….REAL
	> < >= <= <> =
	All the same comparisons as above, only for Real values.

	….STR
	…
	… for String values

	EQBOOL
	…
	Comparison of Booleans for equality.

	NEQBOOL
	…
	Comparison of Booleans for inequality.

	EQ size
	if STORE[SP–size+1 .. SP] =

 STORE[SP–2*size+1 .. SP–size]

then STORE[SP–2*size+1] := True

else STORE[SP–2*size+1] := False

SP := SP – 2*size + 1
	Compares two topmost blocks of size bytes for equality.

	NE size
	… <> …
	Analogous to the previous instruction, comparison for inequality.

	
	Arithmetical operations
	

	INCINT intval
	STORE[SP–3 .. SP] :=

 STORE[SP–3 .. SP] + intval
	Adds intval to the topmost integer on stack.

	NEGINT
	STORE[SP–3 .. SP] :=

 –Integer(STORE[SP–3 .. SP])
	Negates the topmost Integer on stack.

	NEGREAL
	STORE[SP–7 .. SP] :=

 –Real(STORE[SP–7 .. SP])
	Negates the topmost Real on stack.

	ADDINT
	STORE[SP–3 .. SP] :=

 Integer(STORE[SP–7 .. SP–4]) +

 Integer(STORE[SP–3 .. SP])
	Removes the two topmost Integers from stack and pushes their sum instead.

	ADDREAL
	STORE[SP–7 .. SP] :=

 Real(STORE[SP–15 .. SP–8]) +

 Real(STORE[SP–7 .. SP])
	Analogously, adds two Real values.

	ADDSTR
	…
	Concatenates Strings.

	SUBINT
	…
	Subtracts Integers.

	SUBREAL
	…
	… Reals.

	MULINT
	…
	Integer multiplication.

	MULREAL
	…
	Real multiplication.

	DIVINT
	…
	Integer division.

	DIVREAL
	…
	Real division.

	MODINT
	…
	Integer MOD operation.

	SHLINT
	…
	Shift left.

	SHRINT
	…
	Shift right.

	ANDINT
	…
	Bitwise AND for Integers.

	ANDBOOL
	…
	Logical AND for Booleans.

	ORINT
	…
	Bitwise OR for Integers.

	ORBOOL
	…
	Logical OR for Booleans.

	XORINT
	…
	Bitwise XOR.

	XORBOOL
	…
	Logical XOR.

	NOTINT
	…
	Bitwise NOT.

	NOTBOOL
	…
	Logical NOT.

	
	Built-in functions
	

	SIN
	STORE[SP–7 .. SP] :=

 Sin(STORE[SP–7 .. SP])
	Replaces the topmost Real on stack with its sine.

	COS
	…
	…cosine.

	ARCTAN
	…
	…arctangent.

	RANDOM
	…
	Pops the topmost Integer n from the stack and pushes there a random number in the range 0..n-1.

	ODD
	…
	Pops the topmost Integer and pushes True if that integer was Odd or False – if it was even.

	
	Type conversions
	

	INTTOREAL
	STORE[SP–3 .. SP+4] :=

 IntToReal(STORE[SP–3 .. SP])

SP := SP + 4
	Replaces the topmost Integer on the stack with its real representation.

	INTTOSTR
	STORE[SP–3 .. SP+252] :=

 IntToStr(STORE[SP–3 .. SP])

SP := SP + 252
	Converts the topmost Integer to String.

	FLOATTOSTR
	…
	Real to String conversion.

	ROUND
	…
	Real to Integer conversion (rounding).

	
	Input/Output
	

	READLNINT
	Addr := STORE[SP–3..SP]

STORE[Addr..Addr+3] := ReadInt

SP := SP – 4
	Reads an Integer from the standard input and puts it onto specified address.

	READLNREAL
	…
	… Reads a real

	READLNSTR
	Addr := STORE[SP–3..SP]

if Addr <> –1 then
 STORE[Addr..Addr+3] := ReadInt

SP := SP – 4
	… String input. If specified address is nil then the string read is discarded.

	READINT
	…
	Analogous to READLN, but doesn’t require carriage return to end input.

	READREAL
	…
	…

	READSTR
	…
	…

	WRITE
	Output := STORE[SP–255 .. SP]

SP := SP–256
	Gets the topmost String from the stack and outputs it to standard output.

	WRITELN
	…
	Outputs a String, followed by carriage return.

4 Compilation Scheme

With < Nonterminal > we shall denote KPCode, which is to be generated to compile Nonterminal. The compilation scheme (a bit simplified) is then the following:

< Program >

(
< Block >
< Block >

(
JUMP label
< DeclSection >
label: INCSP Size of data (variables) in the DeclSection

< CompoundStmt >
< DeclSection >
(
[Read information into symbol table]

[Generate code for ProcedureDeclSections only]

< ProcedureDeclSection > (< ProcedureDecl > | < FunctionDecl >
< ProcedureDecl >
(
[Read ProcedureHead into symbol table]

< Block >
< FunctionDecl >
(
[Read ProcedureHead into symbol table]

< Block >
< CompoundStmt >
(
< Statement > *
< Statement >

(
[< Assignment > | < GotoStmt > | < ProcCall > | < StructStmt >]

< Assignment >
(
PUSHINT Address of variable at the left part
< Expression >

STO n

where n is the size of type of Expression in bytes

< GotoStmt>

(
JUMP LabelId
< ProcCall >

(
INCSP ProcedureReturnTypeSize

PUSHMP

DEREF 4
* repeat this line k times,

where k = CurrentScopeLvl – ProcedureScopeLvl

PUSHMP

PUSHPC (Number of instructions between PUSHPC and JUMP) + 1

< Expression > *

SETMP size of parameters + 11

JUMP ProcedureAddress

< StructStmt >
(
< CompoundStmt > | < IfStmt > | < RepeatStmt > | < WhileStmt > |

< ForStmt >

< IfStmt >

(
< Expression >

JIFF falselabel

< Statement (true part) >

[JUMP endlabel

 falselabel: < Statement (false part) >

 endlabel:]

< RepeatStmt >
(
label:

< Statement > *

< Expression >

JIFF label

< WhileStmt >
(
label1: < Expression >

JIFF label2

< Statement >
JUMP label1

label2:

< ForStmt >

(
PUSHINT Address of integer loop variable Ident

< Expression (loop from) >

STO 4

< Expression (loop to) >

label1: DUP 4

PUSHINT Address of loop variable

DEREF 4

GEINT

(or LEINT if looping “downto”)

JIFF label2:
< Statement >

PUSHINT Address of loop variable

PUSHINT Address of loop variable

DEREF 4
INCINT 1
(or –1 in case of “downto”)

STO 4
JUMP label1

label2: INCSP –4
< Expression >
(
< SimpleExpression > { < SimpleExpression > < RelOp > }*
< SimpleExpression >(
< Term > { < Term > < AddOp > }*
< Term >

(
< Factor > { < Factor > < MulOp > }*
< Factor >

(
In case of a constant compiles the relevant PUSH*** instruction

In case of a variable: PUSHINT VarAddr DEREF VarSize
< RelOp >

(
Compiles the relevant relational operator (GE** | LE** | GT** etc)

< AddOp >

(
Compiles the relevant AddOp
< MulOp >

(
Compiles a MulOp

5 Implementation

The main 3 parts of the compiler are scanner, parser and symbol table. Scanner separates a stream of characters into tokens; parser recognizes the grammatical structure of the program and performs translation into KP-Code. To store and manage information about symbols (variables, constants, types, etc), the parser uses symbol table. A separate part of the system is an interpreter that executes a KP-Code program produced by the parser.

5.1 Scanner

The scanner for the source language reads a file with a KPascal program and divides it into “tokens” - the terminal symbols of KPascal (see section 2.3 Lexemes). It implements the following interface:

 IScanner = interface
 procedure SetFile(FileName: String);// Set file to read
 procedure Open; // Open file

 procedure Close; // Close file

 function GetNextToken: Boolean; // Read next token from file,

 // return False if EOF

 procedure Rollback; // Returns one token back

 function CurrentToken: TToken; // Get the token read last
 function CurrentLine: Integer; // The first line has no. 1, etc.
 function FileLen: Integer; // Length of the current file
 function FilePos: Integer; // The no. of the char read last
 end;

Procedures SetFile and Open are used to open a file, which can then be read token by token by using function GetNextToken. When the end of file is reached, this function returns False and the file is closed. At any moment the most recent token read by the last GetNextToken call is accessible via function CurrentToken. procedure Rollback acts like an “undo” for GetNextToken. In my implementation Rollback will undo only one call of GetNextToken, that is, every call to Rollback must be preceded by at least one call to GetNextToken. Functions FileLen and FilePos may be used to inform the user of the overall scanning progress. Function CurrentLine makes it possible to report the location of errors.

Each token is an instance of the TToken type:

 TToken = record
 TokenID: TTokenType;

 case Integer of
 1: (IntValue: Int64); // Can hold both Integers and Cardinals
 2: (RealValue: Real);

 3: (BoolValue: Boolean);

 4: (StringValue: String[255]);

 5: (IdentName: String[255]);

 6: (WrongToken: String[255]);

 end;

The TokenID field of TToken shows the type of the token:

 TTokenType = (tokNone, tokSemicolon, tokColon, tokComma, tokDot, tokUpto,

 tokLSquareBracket, tokRSquareBracket, tokLBracket, tokRBracket,

 tokAssign, tokRoof, tokAt, tokEq, tokGt, tokLt, tokGe, tokLe, tokNe,

 tokPlus, tokMinus, tokMul, tokSlash, tokOR, tokXOR, tokDIV, tokMOD,

 tokAND, tokSHL, tokSHR, tokNOT, tokNIL, tokLABEL, tokCONST, tokTYPE,

 tokVAR, tokBEGIN, tokEND, tokIF, tokTHEN, tokELSE, tokFOR, tokTO,

 tokDOWNTO, tokDO, tokWHILE, tokREPEAT, tokUNTIL, tokARRAY, tokOF,

 tokPROGRAM, tokPROCEDURE, tokFUNCTION, tokGOTO, tokRECORD,

 tokFORWARD, tokIdent, tokInteger, tokReal, tokBoolean, tokString,

 tokEOF);

If TokenID is tokInteger, tokReal, tokBoolean or tokString, then the actual value of the token is stored in IntValue, RealValue, BoolValue or StringValue fields of the structure correspondingly. In case of an identifier (tokIdent) the IdentName field holds its name, and in case of an erroneus token (tokNone) its representation (as it was read) is stored in the WrongToken field.

Integers, reals, booleans, identifiers and strings, recognizable by the scanner should comply with usual pascal conventions:

· An integer is just a sequence of numbers (like 123),

· Reals may have an optional decimal part and an optional mantissa (like 12.3e+23)

· Strings are a combination of character sequences in single quotes and sequences of escape codes (each code preceded by a #). A single quote in a string is represented by repeating it. (For example: ‘a’#32’b’’c’ represents a string a b’c).

· Identifiers must begin with a letter or an underscore (_) and consist of letters, numbers and underscores. An identifier cannot be longer than 64 characters. (These are identifiers: a12, _B_C23D).

5.2 Symbol Table

The symbol table is basically a database, containing information on identifiers, declared in a program ("symbols"). There are 5 types of identifiers stored in the symbol table:

· Type declarations

· Constants

· Procedures

· Variables

· Labels

Kind of information, associated with each identifier, depends on its type (value and type are stored for constants, address and type – for variables, etc.).

To support nested scopes of KPascal, storage in the symbol table is also organized in scopes. Each symbol is assigned a scope level so there may be more than one symbol in the table with the same name but with different scope levels. In this case the symbol, whose scope level is higher, “covers” all other symbols with this name. To achieve this effect symbols with the same name are stored in a stack-like manner.

So, in my implementation symbol table is a hash table that stores TSymbol type records:

 TSymbolType = (symLabel,symType, symVariable, symConstant, symProcedure);

 TSymbol = record
 Name: String; // Must be in upper case
 ScopeLevel: Integer;

 SymbolType: TSymbolType;

 case TSymbolType of

 symLabel: (LabelIdx: Integer);

 symConstant: (ConstValue: PExpressionValue);

 symVariable: (VarDesc: PVariableDescriptor);

 symType: (TypeDesc: PTypeDescriptor);

 symProcedure: (ProcDesc: PProcedureDescriptor);

 end;

 TSymbolTableItem = record
 Symbol: TSymbol;

 StackNext: PSymbolTableItem;// Next pointer for a stack

 HashNext: PSymbolTableItem; // Collision pointer for a hashtable
 end;

Here are the data structures used for each of symbol types:

For type declarations:

 TType = (typInteger, typReal, typBoolean, typString, typPointer,

 typRecord, typArray, typCopy, typForward);

 TTypeDescriptor = record
 Name: String;

 Kind: TType;

 Size: Integer; // in bytes
 RefCount: Integer;

 case TType of
 typPointer: (PointerDesc: PTypeDescriptor);

 typArray: (Lo, Hi: Integer; ArrayOf: PTypeDescriptor);

 typRecord: (RecordDesc: PRecordDescriptor);

 typCopy: (CopyOf: PTypeDescriptor);

 end;

 TRecordDescriptor = record
 FieldName: String;

 FieldType: PTypeDescriptor;

 FieldOffset: Integer;

 Next: PRecordDescriptor;

 end;

For constants:

 TExpressionValue = record
 ExprType: PTypeDescriptor;

 ValueKnown: Boolean;

 case Integer of
 0: (IntValue: Int64);

 1: (BoolValue: Boolean);

 2: (StringValue: String[255]);

 3: (RealValue: Real);

 4: (PtrAddress: Integer);

 end;

For variables:

 TParmKind = (prmVar, prmValue);

 TVariableDescriptor = record
 ScopeLevel: Integer;

 Address: Integer;

 VarType: PTypeDescriptor;

 VarKind: TParmKind;

 end;

For procedures:

 PParmDescriptor = ^TParmDescriptor;

 TProcedureDescriptor = record
 Name: String;

 LabelIdx: Integer; // Index into the label table

 ScopeLevel: Integer;

 IsSystemProc: Boolean; // System procs are Exit,Break,Sin,Cos, etc.
 ReturnType: PTypeDescriptor; // nil if no return type
 Parms: PParmDescriptor;

 ParmSize: Integer; // Size of parameters, in bytes
 end;

 TParmDescriptor = record
 ParmKind: TParmKind;

 ParmName: String;

 ParmType: PTypeDescriptor;

 Next: PParmDescriptor;

 end;

For labels only their “index” is stored. In the process of compilation an address is bound to each label index and stored in a label table (which is nothing more than a simple array).

5.3 Parser

The recursive descent parser corresponds to the formal grammar and compilation scheme given above. Though it is the largest part of the system there are no special data structures related to it.

6 Literature

· Compiler Design. – Reinhard Wilhelm, Dieter Maurer. Addison-Wesley Publishing 1995.

· Practice and Principles of Compiler Building with C. – Henk Alblas, Albert Nymeyer. Prentice Hall Europe 1996.

· Design and Construction of Compilers. – Leonidas Fegaras.

(http://lambda.uta.edu/cse5317/spring01/long/)

