Privacy-preserving Data Mining

Konstantin Tretyakov

October 17, 2005

Abstract

The relatively young subject of privacy-preserving
data mining attempts to provide ways of execut-
ing complex statistical analyses on large databases
without the need to fully disclose the contents of the
databases themselves. There are two approaches
that achieve this goal: one is based on cryp-
tographical (and thus mostly number-theoretical)
techniques; another uses statistical randomization
methods. This paper aims to give a brief overview
of the two methods. The sketch of the privacy-
preserving version of the decision-tree construction
algorithm ID3 is presented as an illustration of the
cryptographic technique.

1 Introduction

It is well known that statistical analysis of large
datasets can provide significant insights and guide
to successful business decisions. A wide range of
sophisticated algorithms have been developed dur-
ing the recent decades, that allow to extract useful
knowledge from data. Collectively these algorithms
are known as data-mining methods.

A typical data-mining algorithm usually requires
all data to be collected into a single warehouse be-
fore being analyzed. However, privacy and security
considerations might often prevent this approach.
For example, medical institutions might want to
use data mining to identify trends and patterns
in disease outbreaks. They would benefit greatly
if they could combine their medical data with the
insurance records of the patients, but the insur-
ance companies will not be willing to disclose their
database, protecting their clients’ privacy.

The subject of privacy-preserving data mining
attempts to address this issue by providing ways
of executing the data mining analyses in such cases

without the need for either party to completely dis-
close its database to the other. This paper gives a
brief overview of some privacy-preserving data min-
ing methods. The motivation and the statement of
the problem are given first. Then the two kinds
of techniques—cryptographic and statistical—are
briefly presented together with small examples.

2 General Notions

2.1 Motivation

There are two conceptually different contexts of ap-
plication for privacy-preserving data mining. The
first one, that of a secure multi-party computation
was already mentioned above. More abstractly,
suppose there are n parties, each party ¢ holding
some data D;. The parties are willing to compute
the result of applying some function f to their data:
f(D1,Da,...,D,), but none of them is willing to
disclose their data to the others. In our case the
function f might be some specific data-mining al-
gorithm, such as clustering or association-rule min-
ing.

The second application is related to demography
studies. For example, national census surveys col-
lect a lot of confidential information. Once col-
lected, the information must be released to the
public in a form that is both privacy-preserving
and useful for statistical analyses. Formally, the
problem is of transforming a given database D to
another form D’ which hides private information,
but retains some “safe” statistical content. Another
example is a web-based survey that collects con-
fidential information from lots of people to esti-
mate certain global statistics. If we modify each
surveyed person’s data in a consistent manner, we
might preserve people’s privacy and still retain a
way to obtain the required summaries. This exam-

ple is a special case of transforming a database to a
“privacy-preserving” form with the assumption that
the database is transformed on a record-by-record
basis.

2.2 The Two Approaches

There are two approaches to privacy-preserving
data mining that more-or-less correspond to the
two application areas described above. The secure
multi-party computation problem is usually solved
using the so-called cryptographic approach, the in-
spiration for which was originally provided in the
work [2] by Yao. Effective cryptographical tech-
niques exist that allow to infer decision trees [3],
association rules [4] and perform clustering [5] with-
out the need for any party to disclose any informa-
tion to others. A common trait of these techniques
is that they mostly modify the way in which the
data-mining algorithms are run but leave the data
untouched.

The demographics flavor of the privacy-
preserving mining, on the other hand, is better
solved by modifying the data itself: by perturbing
it randomly, hiding or inserting new values in a
certain manner. The technique is usually referred
to as randomization [6]. In contrast to the crypto-
graphic approach, the randomization methods do
not attempt to modify the algorithm. Thus they
do not usually require much additional computa-
tion and are applicable in an off-line setting. The
price for these advantages is somewhat reduced
preservation of privacy.

2.3 Distributed vs Centralized Data

The data-mining algorithms considered in this pa-
per process data organized in a tabular manner.
We use the term database here to refer to such data.
A database consists of rows (also called records or
transactions) and columns (also called attributes).
Depending on the application, the database might
be either centralized or distributed among several
parties. Although we could theoretically imagine
the data to be distributed in an arbitrary manner,
in practice there are only two common kinds of
database partitions. We say that the database is
vertically partitioned if every party has values for a
certain subset of attributes of each record. We call

the database horizontally partitioned if each party
holds a subset of rows of the whole database.

Attributes Attributes
|
I _D1
[2) : 7]
g/ D1 1 D gl
e I x
| D

Vertical partition Horizontal partition

Figure 1: Kinds of database partitions

Vertical partition corresponds to the case of a
store that has the billing information of its cus-
tomers, but lacks data about their income. Hori-
zontal partition corresponds to the case where two
different, stores have different customers, but hold
the same kind of information about them. In both
cases the complete database D = Dy U D4 is more
useful for knowledge discovery than the parts. This
paper will only illustrate the case of horizontally
partitioned databases, however, methods exist that
handle vertical [4, 5, 7, 8] as well as arbitrary data
partition [9].

3 Cryptographic Techniques

Cryptographic techniques approach the multi-party
case with distributed data and attempt to derive
methods with which the parties may calculate some
common result without giving away any of their
private information. A simple illustration to this
idea is the following secure-sum algorithm.

3.1 Secure Sum

Suppose that each of n parties (denote them as
Py, Py,...,P,) has a secret number wu;, which is a
non-negative integer, and the parties would like to
calculate the sum of their numbers u =), u; with-
out revealing the numbers themselves. In order to
achieve it they can act in the following way:

1. Assume u € [0, m—1]. Select P, as the master.

2. The master generates a random number R uni-
formly from [0,m — 1] and sends the modulo-
m sum of this number with its own secret,

(R + u1), to P,. It is easy to see that if
R~U(0,m—1) then (R+uy1) ~U(0,m —1)
(all additions here and further on are modulo-
m) therefore P, learns nothing about the secret
of Pl.

3. P, now adds its own value us to the received
one and sends it further to Ps;. Analogously
to the previous case, the value (R + uq + u2),
received by P3 discloses no information. Pj
adds its own secret and passes the value on.

4. When the value reaches the last party P, it
adds its secret u, and returns the collected
sum R+)" | u; to the master P;. The mas-
ter may now substract R from this value and
thus obtain the sum of interest.

3.2 Defining Privacy

The secure sum algorithm presented above, al-
though simple, readily illustrates the major pos-
sibilities and problems of the approach. First, note
that although no party did explicitly reveal its se-
cret, the obtained sum does leak some information
about the possible values for u;. For example, if
there are three parties, the sum w is 60 and u; = 60,
then P; will immediately find out that us = ug = 0.
If there are only two parties, then the resulting sum
always reveals the secret u; of the other party. This
leak of information is inevitable if the parties wish
to learn the output. Therefore we define “privacy”
by limiting the information that is leaked by the
algorithm to precisely the information that can be
learned from the output. This corresponds to the
ideal scenario, where the parties simply forward
their data to a single independent trusted party,
that then performs the calculation privately and
sends the back the obtained results.

Also note that the sum algorithm preserves pri-
vacy assuming certain “honesty” of the participants.
If, for example, two out of the three parties agreed
to use 0 instead of their secret numbers, they would
be able to learn the value of the third participant.
There are many other possibilities for an active ad-
versary to disrupt privacy by deviating from the
protocol. On the other hand, the algorithm is com-
pletely secure against an adversary that correctly
follows the protocol, but might try to learn some-
thing from the received messages. We call the for-
mer kind of adversaries malicious, and the latter —

semi-honest. It is much harder to design an algo-
rithm secure against malicious adversaries, so most
methods assume semi-honest participants. This is
not too strict a limitation, however, as it often cor-
responds to the real-life setting. Sometimes it is
possible to transform the semi-honest-secure pro-
tocol to a malicious-adversary-secure by incorpo-
rating zero-knowledge proofs of the legitimacy of
each step.

It is rarely the case where absolute security can
be achieved without any assumptions about the
power of the adversaries. The secure-sum algo-
rithm, for example, will only be secure if the adver-
sary cannot eardrop on the connections between the
participants. Many other algorithms require even
stronger assumptions, the most common of which is
the assumption of a polynomial adversary. Stated
simply, the assumption requires that the adversary
will only be able to run polynomial-time algorithms
on its data. This excludes the possibility of simple
brute-force attacks.

We shall present here a more elaborate exam-
ple of a privacy-preserving decision-tree construc-
tion algorithm. But before that we shall introduce
the notions of oblivious transfer and secure func-
tion computation. These will provide some addi-
tional insightful illustrations to the whole subject
and will be used as primitives in the decision-tree
algorithm.

3.3 1-out-of-2 Oblivious Transfer

An important primitive used in many privacy-
preserving solutions is the 1-out-of-2 oblivious
transfer (OT) protocol. Suppose that there are two
parties: A and B. Let B have two pieces of infor-
mation: yo and y;. A wishes to learn one of them,
yk- A l-out-of-2 OT protocol is a protocol involv-
ing A and B at the end of which A4 learns y; and
nothing more, and B learns nothing (i.e. it does
not learn k). Here is a simple example how this
protocol could be implemented using the El Gamal
public-key encryption scheme:

e Let G be a cyclic multiplicative group satis-
fying the DDH assumption' and let ¢ be any

LA cyclic multiplicative group is said to satisfy the Deci-
sional Diffie-Hellman (DDH) assumption iff for a randomly
chosen generator g and exponents a, b and c¢ the tuples
(9,9% g% g°®) and (g,9%, g°, g°) are computationally indis-
tiguishable.

generator of G.
e B choses a random ¢ € G and sends it to A.

e A generates a private key z € G and a public
key y = ¢®. It also generates another “pub-
lic key” z = cy~!. The computation of the
private key corresponding to z should be com-
putationally infeasible due to DDH.

e Suppose A wishes to perform the oblivious
transfer of item k& € {1,2}. Let ¢x = y, the
public key for which A has the corresponding
private key, and let c3_; = z the second public
key generated by A. A sends the pair (c1, c2)
to B.

e 3 checks that cico = c¢ (this ensures that A
knows only one of the two private keys), en-
crypts y; using the key c;, y2 using key co and
sends the two encryptions (e1, e2) back to A2

e A decrypts ej using the available private key
x thus obtaining yi.> A cannot learn yz_j
because it cannot decrypt es_g.

The described protocol is rather effective, requir-
ing only three passes of communication*, and it is
secure if the DDH assumption holds for a chosen
G =1Z,.

3.4 Secure Function Computation

Let f(z,y) be a function of two arguments. Let A
be the holder of z, and B be the holder of y. A and
B are willing to compute f(z,y) without disclosing
their values. This can be done using the protocol
proposed by Yao [2].

The main idea is to represent the function f as
a combinatorial circuit. The simplest possibility is
to express each bit of f(z,y) as a boolean function
of the argument bits, and encode the resulting bit-
functions in a single boolean circuit.

It is possible to represent any function f
{0,1}™ — {0,1}™ in such a way and often the rep-
resentation is reasonably small (however, there are

2e; = (fi1, fi2) where fi1 = g™, fio = yic)?, and 7; is
generated uniformly at random.

Byk = fra(fif) ™1

4There exist more effective algorithms, however. For ex-
ample the protocol by Aiello, Ishai and Reingold [10] requires
two passes only.

Inputs
- w
XOR AND
Outputs

Figure 2: A boolean circuit representation of a
function that adds two bits (a half-adder).

cases where the size of the resulting circuit is expo-
nential in n).

The resulting circuit is then garbled by B. Gar-
bling is performed in the following way:

e For each wire ¢ in the circuit, B generates two
@) and w'®
-

random numbers: w,
e For each gate in the circuit, B constructs a
table that maps the garbled input values to
the encryptions of the corresponding output
values. For example, for the AND-gate with
input wires i, j and output wire & the following

table will be created:

Wire i | Wire j | Encrypted wire k
w” [l | B w® (wy)
w | W Eo0w”)
o | | By o)
w | el B 0w

where E, ;(c) denotes the encryption of ¢ using
keys a and b. This table now allows to deter-
mine the garbled value of the output wire of
the gate, knowing the garbled values of the in-
put wires: the output value may be obtained
by decrypting the corresponding table entry
with the input values as the keys.

B sends to A the whole garbled circuit (i.e. the
tables of all the gates), the garbled values for B-
s input wires, and the translation of the garbled
values to actual bits for the circuit’s output wires.

Now if A could find out the garbled values for its
input wires, it could compute the output of the
circuit and nothing else. So, in order to obtain the
garbled values for each of its input wires, A invokes
a 1-out-of-2 OT protocol with 5.

This protocol turns out to be secure in the sense
that it does not leak any information apart from
that inferrable from the result. It is also reasonably
effective: the amount of communication is propor-
tional to the number of gates in the circuit, which is
small for most “reasonable” circuits (like addition,
multiplication, comparison). It thus allows to se-
curely compute a wide range of functions. However,
it is not applicable to typical data-mining problems
directly, because although any statistical analysis
might be represented as a function f that takes a
database of records as its input, the size of the input
for this function and its circuit representation are
enormous, thus this algorithm is no more practical.

Therefore, more specific methods must be in-
vented for every data-mining algorithm, and such
methods do exist. Let us consider the privacy-
preserving version of the ID3 decision-tree con-
struction algorithm.

3.5 ID3 in brief

ID3 is a simple and robust method for construct-
ing decision trees, proposed by Quinlan [11]. The
derivatives of this algorithm such as C4.5 [12] are
widely used in practice.

Let D be some database. For simplicity we
assume that the data contains only nominal at-
tributes (i.e. attributes with finite value sets). One
of the attributes is special and is representing the
class of the corresponding record. A decision tree
is a model of a classifier, that can predict the value
of the class attribute, given the values of the other
attributes of any record. It is a rooted tree, each
non-leaf node of which corresponds to a test on the
value of an attribute, and each leaf node specifies
the value of the class attribute for all records that
would pass the tests on the path from the root to
this node. ID3 is an algorithm that constructs deci-
sion trees from data. The tree is constructed so as
to describe the data in a given database D well.
The algorithm proceeds recursevely in a greedy
manner, choosing for the nodes of the tree primar-
ily those attributes that best discriminate the class
attribute. More specifically:

Figure 3: An example of a decision tree that clas-
sifies weather conditions into suitable and non-
suitable for playing tennis (from [13]).

Algorithm: ID3
Input: a database D. Output: a decision tree.

1. If D is empty, return an empty tree.

2. If all the transactions in D have the same class
value, return a leaf node indicating this class
value.

3. Otherwise, determine the attribute A that best
classifies the transactions in D.

4. Create a new tree node N, that splits the data
on the values of this attribute.

5. For each value a; of the attribute A:

e Select the subset of database records,
that have a; as the value for this at-
tribute, denote the set by D(a;).

e Run ID3(D(a;)) creating the whole sub-
tree.

6. Return the tree with root node N, edges cor-
responding to values of attribute A and such
that the edge labeled by a; leads to a subtree
returned by ID3(D(a;)).

The detail that was left unspecified in the above
algorithm description is the method of finding the
attribute that best predicts the class value. Such
attribute can be found as the attribute having the
maximal mutual information with the class at-
tribute I(A4;C). Mutual information of attribute

A with the class attribute C is often called infor-
mation gain of A and is defined as:

Galn(A) = HD(C) — HD(C|A)
where Hp(C) is the entropy of the class distribu-
tion in the database and Hp(C|A) is the condi-
tional entropy of the class, given A:

HD(C = *ZPD(Ck)logPD(Ck)
k

Hp(ClA) = ZPD(ai)HD(CM = a;)

Hp(C|A =q;) = ZPD ¢k, a;)log Pp(ck, a;)
k

where Pp(ci) denotes the fraction of records in D
with class ¢k, Pp(ck,a;) denotes the fraction of
records in D(a;) with class C = ¢, and Pp(a;)
is the fraction of records in D with value a; for
attribute A.

Intuitively, the information gain of A shows how
many bits of information the value of A discloses
on average about the class.

3.6 Privacy-preserving ID3

Suppose the two parties, A and B have different
records of a horizontally split database D, and are
willing to run the ID3 algorithm on D in a privacy-
preserving manner. Due to the structure of ID3, it
is enough to show how the parties can locate the
attribute with the maximum gain at each step, as
this is the only action that is performed recursively
in the whole algorithm. The result of this interme-
diate computation may be immediately disclosed to
both parties because it is inferrable from the final
result of the computation.

3.6.1 Finding the Attribute with Maxi-
mum Gain

Let us fix some attribute A. Now note that instead
of maximizing gain Hp(C) — Hp(C|A) we might
as well minimize the conditional entropy Hp(C|A).

Now D
>

CA
(©14) |D|

|D(ai, cx)|
|D(a;)]

|D(a;, ck
X

Z D)
where | - | denotes set cardinality and D(a;,cx) is
the subset of records with A = a; and class C' = ¢;.
So:

Hp(C14) = 75

X <— Z zk: |D(a;, c)|log | D(a;, ci)|+
+Z|D(ai)|10g|D(ai)l>

k

As we are searching for the attribute that minimizes
Hp(C|A), we may ignore the constant r7; and use
natural logarithms instead of logarithms to base 2.
What is left is a sum of the form

lenx

where the values = are the counts of certain types
of records in the whole database. Each x is either
|D(a;)| or |D(a;,cx)| and is therefore a sum of a
value known by A, and a value known by B: for ex-
ample |D(az)| = |D1(a1)| + |D2(az)| where |D1(az)|
is obtained by counting the number of records with
A = a; in the database held by A and |D2(a;)| is
the number of records with A = ¢; in the database
of B. Therefore if we can manage to privately cal-
culate the sum of the form

Z(x +y)In(z +y)

we shall also be able to execute the ID3 algorithm
privately. But we might use the Yao’s universal al-
gorithm to perform this task, as well as the task of
comparing such sums obtained for every attribute
and selecting the best one. Of course, the circuit
for computing xInz might be large and the pre-
cision rather crude, but this problem is solved us-
ing a clever optimization trick that we shall not
cover here as it is a bit too involved. The inter-
ested reader is referred to the paper [14].

This completes the presentation of the
cryptography-based techniques for privacy-
preserving data mining. The next part briefly
describes the other flavor of the subject: random-
ization.

4 Randomization

4.1 Numerical Randomization

As already noted before, randomization of data
provides alternative ways of preserving privacy.
Consider a simple example: people submit their
age to a central database via a web-based ques-
tionnaire. The collected data is then used to find
the average age of the customers. Now note that
if we asked each person to add a random value
with zero mean to his age prior to submitting it,
we might still be able to calculate the average age
with acceptable precision while preserving the pri-
vacy of the customers. This idea may be general-
ized and formalized to the following: let each client
Ci, i =1,2,...,N, have a numerical attribute z;.
Assume that all the values z; are instances of i.i.d.
random variables X; with distribution Fx. The
server wishes to learn this distribution, but it must
not learn the client’s individual values x;. The
clients submit to the server the perturbed values
z; = x; + vy; where y; are random shifts with dis-
tribution Fy which is known to the server. The
server can also estimate the distribution F; of the
submitted values z;. The task is to restore the un-
known distribution Fx knowing Fz and Fy. The
paper [15] by R. Agrawal proposes an iterative al-
gorithm for restoring F'x, based on the Bayes’ rule.
The algorithm is the following:

1. Let f% be the uniform distribution. This will
be our first approximation to density of Fx.

2. Let j denote the iteration number. At first

7:=0.

3. Iteratively enhance the approximation:

J+l, y _ 1 N fy(zi=a) % (a)
® Jx (a) - N Zi:l ffooo fy (zi—2)fL (2)d=

o j:=7+1

Obviously, the correct fx is one of the fixpoints
of the algorithm. Whether it is the only point is
not clear, however. The practical implementation
of the algorithm might use piecewise constant func-
tions to represent the densities f%.

This algorithm of density restoration may now be
used in a more complex setting. For example, we
saw that the decision-tree construction algorithm
ID3 only requires the knowledge of the distributions

of the attributes. It can be therefore adapted to a
randomized setting. Here the server will have to
run the “derandomization” algorithm every time it
wishes to estimate the distribution of any attribute
or class. The article [15] states that this approach
is effective for the training sets as large as 100000
records, and provides a decent amount of privacy.

4.2 Privacy Breaches

The randomization-based approach differs from the
cryptographical one in the fact that it by definition
cannot conceal all the information and something
will definitely leak. Therefore some measure of pri-
vacy needs to be introduced. The simplest idea is to
use the length of the shortest ¢% confidence interval
|I(z;)| that the server can establish for the clients’
secret values z;, knowing the submitted values z;.
If the length of the interval is large enough, we
might consider the algorithm safe. Unfortunately,
this measure can be misleading. One problem is
that it is not dependent on the distribution F'x.
Consider for example the following density func-
tion:

ey = {

Assume that the shift Y is distributed uniformly
in [-1,1]. The length of the 100% confidence in-
terval is then 2. However, if we take into account
that X must always belong to the set [0,1] U [4, 5]
we can always compute a shorter confidence inter-
val of length 1. Another example: suppose we are
perturbing the age of the people by adding to it a
random integer distributed uniformly in [—50, 50].
The length of the 100% confidence interval is here
100 and clearly such a randomization does in gen-
eral a good job hiding information. However, in
some particular cases it still allows the server to in-
fer the client’s values with reasonable certainty. For
example, if the randomized value is 125 then with
probability more than 90% the original age is close
to 75. Similarly, if the randomized value is —45,
the original value must be between 1 and 5. Such
situations are called privacy breaches, and have to
be taken into account when using or designing a
randomization-based algorithm.

Another possibility to measure privacy is related
to mutual information I(X;Z). The greater this
value, the more information about X is retained in

fo<z<lor4<z<ph
otherwise

Z and hence the less privacy is preserved. How-
ever, even this information-theoretic privacy mea-
sure does not free us from the notion of privacy
breaches.

5 Summary

To conclude, there exist effective cryptographic and
randomization-based solutions that allow to run
data-mining algorithms on large datasets and at
the same time protect the privacy of the individual
data items. The methods are not universal, how-
ever, and each new data-mining algorithm will have
to be manually converted for the privacy-preserving
setting. The existing methods, however, cover most
of the typical data-mining tasks and are readily ap-
plicable in practice.

The subject is young and there are no well-
known textbooks yet. There are some really good
overviews, however, such as [1, 14, 4, 6].

References

[1] Vassilios S. Verykios, Elena Bertino, Igor Nai
Fovino, Loredana Parasiliti Provenza, Yucel
Saygin, and Yannis Theodoridis. State-of-the-
art in privacy-preserving data mining, 2003.

[2] A. C. Yao. How to generate and exchange se-
crets. In Proc. IEEE Symp. on Foundations of
Computer Science, 1986.

[3] B. Pinkas. Cryptographic techniques for
privacy-preserving data mining. 2002.

[4] J. Vaidya and C. Clifton. Privacy preserv-
ing association rule mining in vertically par-
titioned data, 2002.

[5] J. Vaidya and C. Clifton. Privacy-preserving
k-means clustering over vertically partitioned
data, 2003.

[6] A. Evfimievski. Randomization in privacy-
preserving data mining. 2002.

[7] Jaideep S. Vaidya. Privacy preserving data
mining over vertically partitioned data.

[8] Boris Rozenberg and Ehud Gudes. Analysis of
two approaches for association rules mining in
vertically.

[9] Geetha Jagannahan and Rebecca N. Wright.
Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data, 2005.

[10] Bill Aiello, Yuval Ishai, and Omer Reingold.
Priced oblivious transfer: How to sell digital
goods. Lecture Notes in Computer Science,
2045:119-2?, 2001.

[11] J. R. Quinlan. Discovering rules from large
collections of examples: a case study.

[12] John Ross Quinlan. C4.5: Programs for ma-
chine learning., 1993.

[13] Tom Mitchell. Machine Learning. McGraw
Hill, 1997. 414 pages.

[14] Yehuda Lindell and Benny Pinkas. Privacy-
preserving data mining.

[15] R. Agrawal and R. Srikant. Privacy-preserving
data mining, 2000.

	Introduction
	General Notions
	Motivation
	The Two Approaches
	Distributed vs Centralized Data

	Cryptographic Techniques
	Secure Sum
	Defining Privacy
	1-out-of-2 Oblivious Transfer
	Secure Function Computation
	ID3 in brief
	Privacy-preserving ID3
	Finding the Attribute with Maximum Gain

	Randomization
	Numerical Randomization
	Privacy Breaches

	Summary

