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Abstract

Relevance vector machines (RVM) is a family of
machine learning methods, introduced by Tipping,
that represent a bayesian approach to the train-
ing of general linear models (GLM). RVM-s are re-
ported to be able to e�ectively produce convenient
sparse representations of data thus competing with
the popular support vector machines. When used
with a suitable set of basis functions, RVM-s can
be applied to the analysis of genome sequence data.
The Eponine models provide such sets of functions.
This article gives a brief (and probably slightly sim-
plistic) overview of the application of the RVM with
Eponine to genome sequence analysis, a work orig-
inally described by Down.

1 Introduction

Machine learning methods play an important role
in bioinformatics by providing ways of inferring use-
ful knowledge from raw data. Methods like hid-
den markov models, neural networks, support vec-
tor machines, etc. have their steady place in the
arsenal of common pattern analysis tools of bioin-
formatics. These methods are used in a multitude
of contexts such as classi�cation of genes and DNA
sequences or detection of motifs identifying tran-
scription start sites (TSS) or transcription factor
binding sites (TFBS). This article presents a brief
overview of yet another family of machine learning
methods, the Relevance Vector Machine (RVM),
which, when combined with the Eponine model,
can be used to classify DNA sequences and to infer
useful motif information.
The RVM method was �rst introduced by Tip-

ping [1]. The Eponine set of models and their appli-

cation to DNA sequences is due to Down [3, 4, 5, 6].
This work aims to give a very brief summary of
the cited papers. The basic context is explained
�rst. Then follows the description of relevance vec-
tor machines and the Eponine family of models,
illustrated by the applications to sequence analy-
sis.

2 Preliminaries

One of the central questions in bioinformatics is
related to the analysis of DNA sequences of the
genes, of their promoter regions and even of the
non-coding regions of the genome. One particu-
larly common and promising method is learning
classi�cation models for the sequences into sev-
eral classes. As an example, consider two sets of
DNA sequences�P+ and P−�such that all the
sequences s in P+ are taken from the promoter re-
gions of certain genes, and the sequences in P− are
just random parts of the genome. Suppose that we
shall be able to somehow �nd a classi�er function
f , that has f(s) = 1 for s ∈ P+ and f(s) = 0 for
s ∈ P−. There are two important applications for
such a function. Firstly, we may assume that the
function generalizes, i.e. it would mostly return 1
when given a substring of any gene promoter, and
0 otherwise. In this case we can use the function to
classify previously unseen sequences and thus �nd
other promoter regions in the genome. Secondly, we
may try to �look inside� f , and attempt to under-
stand how the classi�er makes its decision and thus
what are the features discriminating P+ from P−.
Clearly, in order to use this approach we need a
method for constructing classi�ers from data, that
is, we need machine learning.
Machine learning is a discipline, the general task
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of which is often viewed as inferring an unknown re-
lationship f : X → Y from a training set of known
samples (xn → yn), n ∈ {1, . . . , N}. It is most of-
ten done by �xing the general parameterized form
of the relationship f (i.e. specifying the model)
and using the available data to �nd the parameters
(also called weights) of the model to make it �t the
data. One particularly useful class of models is the
class of generalized linear models (GLM). A GLM
is a model of the form:

fw(x) =
M∑

m=1

wmφm(x) + w0

where φm is a set of M basis functions (which
can be arbitrary real-valued functions) and w =
(w0, w1, . . . , wM )T ∈ RM is a vector of weights that
will be adjusted. A notable feature of this model
is that the input variable x enters the formula only
via the basis functions φm, and thus in theory the
model can be applied to any type of data X, for
which suitable basis functions φm can be provided.
The resulting model is a function f : X → R and
may thus be applied to certain regression tasks.
As in our case we are considering classi�cation, we
shall use the following variant of the model:

fw(x) = σ

(
M∑

m=1

wmφm(x) + w0

)
(1)

where σ(x) = 1
1+e−x is the logistic function, that

rescales the output such that 0 ≤ fw(x) ≤ 1 and
can be interpreted as a probability that given x is
a member of the �positive� class.
There are two questions that remain to be an-

swered before we are able to apply the model to
genome-sequence data:

• How do we infer the suitable values for the
parameters w from the data?

• What are the functions φm?

We shall use the Relevance Vector Machine method
for �nding the parameters and the Eponine model
for the basis functions.

3 Relevance Vector Machine

The Relevance Vector Machine (RVM) is a sparse
method for training generalized linear models. This

means that in general, many of the inferred parame-
ters wm will be zeroes. Sparsity is often a desirable
feature because it implies simplicity, e�ectiveness
and better interpretability of the resulting model.
The RVM is named by analogy to the better-known
Support Vector Machine method, which also results
in sparse models.
The RVM is a bayesian approach to �nding the

parameters, that is, it attempts to �nd the vector of
parameters that is most probable, given the avail-
able data. Let x = (x1, . . . , xN ) denote the list of
all input sequences and t = (t1, . . . , tN ) the cor-
responding class labels (tn ∈ {0, 1}). To �nd the
parameter vector w we shall maximize P (w |x, t)
which can be rewritten using the Bayes' formula as:

P (w |x, t) =
P (x, t |w)P (w)

P (x, t)
∝ P (x, t |w)P (w)

(2)
where the constant factor in the denominator does
not matter because we are maximizing wrt w. An
appropriate way to compute P (x, t |w) is

P (x, t |w) =
N∏

n=1

fw(xn)tn(1− fw(xn))1−tn (3)

where fw is given by (1). The distribution P (w)
can be speci�ed in any way, as it should merely re-
�ect our prior belief in what are the likely values
for the weights. As we are interested in getting a
model having lots of weights close to zero, it is rea-
sonable to choose some decently narrow zero-mean
distribution as a prior. The RVM method uses the
Automatic Relevance Determination principle and
describes the distribution of each weight wm by a
normal distribution with mean 0 and variance α−1

m

. That is,

P (w |α) =
M∏

m=1

N (wm | 0, α−1
m ) (4)

where N (wm | 0, α−1
m ) = 1

α−1
m

√
2π

e−w2
m/2α−2

m is the
gaussian density function. Now that we have intro-
duced new parameters αm we must de�ne priors
P (α) for them too (so-called hyperpriors) because

P (w) =
∫

P (w |α)P (α)dα (5)

For RVM, a very broad gamma distribution is often
used, but the exact choice does not matter much as
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long as the distribution is wide enough. The very
trick of introducing individual hyperpriors for all
the weights is the key feature of the model and
is ultimately responsible for its sparsity properties.
By combining equations (3), (4) and (5) we obtain
the expression for P (w |x, t) that needs to be max-
imized in order to �nd the suitable weights.
The expression is too complicated to be opti-

mized analytically, so an iterative procedure based
on MacKay [7] is usually utilised:

1. For current, �xed values of α, �nd the most
probable weight vector wMP . This is equiva-
lent to the standard optimization of a regular-
ized logistic regression model and can be done
using the e�cient iteratively reweighted least-
squares algorithm [8].

2. Assume that P (w,x, t |α) is approximately a
multidimensional normal distribution centered
at wMP , estimate its covariance matrix at
wMP and use this approximation to update
the α parameters. The details of this step re-
quire a bit too much discussion to be included
in this report, so the interested reader is re-
ferred to [2] for an in-depth description.

The procedure is repeated iteratively until suit-
able convergence criteria is met. Note that the
algorithm is similar in spirit to the expectation-
maximization algorithm. In fact, EM could be ap-
plied directly to the maximization of P (w |x, t,α)
with α being the hidden variables.
The algorithm posesses an important property:

during the iterations many of the parameters αm

will often grow to in�nity, which means that the
corresponding weights wm are with high probability
equal to zero, and can be completely discarded from
the model. This way, the working set of relevant
basis functions φm quickly decreases until a sparse
�nal solution is found.
Now, in order to apply the RVM algorithm to

sequence data we only need to �nd the appropriate
basis functions φm.

4 Eponine RVM Models

4.1 Position Weight Matrices

The basic element of all the Eponine models is the
position weight matrix (PWM). A PWM Wij is a

two-dimensional array of positive real numbers of
size 4×K, that is indexed by alphabet characters
in one dimension (i ∈ {A,C,T,G}) and integer po-
sitions in the second dimension (j ∈ {1, . . . ,K}).
A PWM can be matched to a string s of length K.
The result of a match, denoted by W (s), is a real
number computed as

W (s) =
K∏

k=1

Wskk

It is often the case that each value Wij of a PWM
represents the probability of having the character i
at position j in a sequence. In this case a PWM can
be viewed as a probabilistic model for sequences of
length K. It is often convenient to take logarighms
of the values in the PWM. The matching procedure
then takes the form of a sum rather than a product.

4.2 Eponine Anchored Sequence

The Eponine Anchored Sequence (EAS) is a system
for analyzing the genomic sequence around a cer-
tain anchor point. A number of important sequence
analysis questions, such as prediction of transcrip-
tion start sites or splice sites, can be phrased in
terms of analyzing sequence points. The system
takes an anchored sequence as its input. That
is a DNA sequence s coupled with an index a
specifying the position that should be analyzed.
For example we might use the anchored sequence
(ATGCATGGCG, 3) when asking, whether the third
character in it (G) is the transcription starting point
for some gene. The model's output would be a large
positive real number if it is probably true, and a
large negative number if it is probably false. The
model is parameterized by a positioned constraint
(PC). A positioned constraint is a pair consisting
of a position-weight-matrix W and a probability dis-
tribution P over integer o�sets. The model scores
a given anchored sequence (s, a) as:

φW,P (s, a) =
1
|W |

log
∞∑

i=−∞
P (i)W (s[a + i, |W |])

where |W | is the number of columns in W , and
s[a + i, |W |] is the substring of s of length |W |
starting from index a+i. As a simple example, sup-
pose that W is a PWM describing a single sequence
GATGAG, and P is a distribution that is nonzero only
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at i = −3. The corresponding EAS φW,P will then
assign high scores only to the anchored sequences
that have the string GATGAG starting three positions
before the anchor point.
EAS provides us with an in�nite set of functions

φW,P . We may build a linear combination of a sub-
set of such functions and use the RVM algorithm
to �nd the weights that enable the model to, say,
detect transcription start sites. Once this is done,
we might examine the positioned constraints of the
relevant functions that were left after training. It
is probable that these describe important motifs in
the sequences.
The drawback of the approach is the fact that we

have to select a �nite subset of functions φP,W to
run the algorithm upon. Most probably the subset
will either be too small to contain relevant func-
tions, or too large for the training to be feasible.
The problem can be alleviated by generating new
functions on-the-�y, an approach called sampling
RVM.

4.3 Sampling RVM

Sampling RVM is an approach that allows the RVM
algorithm to converge on a small �nite subset of rel-
evant basis functions from a very large (potentially
in�nite) set of all possible functions. The idea is the
following: we start running the RVM algorithm on
an initial subset of basis functions of size I. During
the course of the algorithm the irrelevant functions
get pruned away and the size of the working set
decreases. Once it hits the low water mark of L
functions, we increase the size of the working set to
high water mark H by adding new functions from
the pool of yet unused ones, and restart training.
This way new functions enter the algorithm incre-
mentally, thus trading some computation time for
memory.
When the whole set of basis functions is in�nite it

makes sense to use heuristics when generating new
functions to be added to the model. For example
we can generate new functions so that they are in
some way �close� to those already in the working
set. In the case of EAS, that would mean that the
PWMs and o�set distributions of the newly gener-
ated functions are slightly perturbed versions of the
ones from the working set. The idea thus resembles
a genetic algorithm and is based on the observation

that if a function φ is relevant then another func-
tion close to it will also probably be relevant.

4.4 EAS Applications

The EAS model together with the Sampling-RVM
algorithm has been applied to the task of tran-
scription start site prediction. The input data was
taken from the EPD database. The positive class
consisted of the real transcription start site anchor
points, and the negative class contained random
points in the genome. The trained model consisted
of 4 basis functions, one of which indicated the well-
known TATA-box at o�set−30 from the site, and the
three others favoured CG-rich regions. This is con-
sistent with the current knowledge, and the model's
predictive performance was comparable to existing
methods such as PromoterInspector or CpG.

4.5 Eponine Windowed Sequence

The Eponine Windowed Sequence (EWS) model is
similar to EAS, but is used to analyze whole se-
quences rather than points. The EWS consists of
a single PWM W , that is scanned over the whole
input sequence to give the score:

φW (s) =
4|W |

|s| − |W |+ 1

∑
i

W (s[i, |W |])

Analogously to the case of EAS we can con-
struct a linear combination of functions φW and
use the sampling RVM method (with the genetic-
algorithm-kind of generation strategy) to infer a
simple classi�er model containing a small number
of them. Analogously, the PWM-s of the functions
in the inferred model should have some biological
signi�cance. The EWS model has been successfully
trained on windows of sequence upstream of anno-
tated genes in which case it worked successfully as
a promoter predictor.
A useful extension of EWS is the convolved EWS

(C-EWS), that can capture large-scale patterns in
sequences. In this case, the basis function is not a
single PWM, but a �sca�old� consisting of one or
more PWM-s, each with associated position dis-
tribution relative to the sca�old's anchor. Sup-
pose W = (W1, . . . ,WK) are PWM-s, and P =
(P1, . . . , PK) their corresponding position distribu-
tions. The score of a C-EWS φW,P is calculated by
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scanning the sca�old over the whole sequence:

φW,P(s) = Z
∞∑

i=−∞

 K∏
k=1

 ∞∑
j=−∞

Pk(j)Wk(s[i + j, |Wk|])


where Z is the normalizing constant:

Z =
4

∑K
k=1 |Wk|

C

where C is the number of addends in the �rst sum
over i (we do not really need to sum from −∞ to
∞, but only over those indices for which some part
of the sca�old intersects the sequence with nonzero
probability).
Again, C-EWS can be used with the sampling

RVM to infer useful models. Due to model's com-
plexity, it might make sense to explore only small
sca�olds of up to 3 PWM-s. The C-EWS algorithm
has been applied to detect exonic splice sites.

5 Summary

Relevance Vector Machines is an interesting sparse
machine learning method, that, when combined
with the Eponine sequence models, can be applied
to extract useful motif information from genome
sequences. RVM training can be done in a rea-
sonably e�ective way using an iterative algorithm
similar in spirit to EM. The results of applying
the RVM+Eponine combination to TSS prediction,
promoter prediction and exonic splice site detection
are promising.
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