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Overview

Spam is Evil

ML for Spam Filtering: General Idea, Problems.

Some Algorithms
Naïve Bayesian Classifier
k-Nearest Neighbors Classifier
The Perceptron
Support Vector Machine

Algorithms in Practice
Measures and Numbers
Improvement ideas: Striving for the ideal filter

Machine Learning Techniques in Spam Filtering – p.1/26



Spam is Evil

It is cheap to send, but expensive to receive:
Large amount of bulk traffic between servers
Dial-up users spend bandwidth to download it
People spend time sorting thru unwanted mail

Important e-mails may get deleted by mistake

Pornographic spam is not meant for everyone
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Eliminating Spam

Social and political solutions
Never send spam
Never respond to spam
Put all spammers to jail

Technical solutions
Block spammer’s IP address
Require authorization for sending e-mails (?)

Mail filtering
Knowledge engineering (KE)
Machine learning (ML)
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Knowledge Engineering

Create a set of classification rules by hand:
“if the Subject of a message contains the text
BUY NOW, then the message is spam”
procmail

“Message Rules” in Outlook, etc.

The set of rules is difficult to maintain

Possible solution: maintain it in a centralized manner
Then spammer has access to the rules
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Machine Learning

Classification rules are derived from a set of training
samples

For example:

Training samples

Subject: "BUY NOW" -> SPAM
Subject: "BUY IT" -> SPAM
Subject: "A GOOD BUY" -> SPAM
Subject: "A GOOD BOY" -> LEGITIMATE
Subject: "A GOOD DAY" -> LEGITIMATE

Derived rule

Subject contains "BUY" -> SPAM
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Machine Learning

A training set is required. It is to be updated regularly.

Hard to guarantee that no misclassifications occur.

No need to manage and understand the rules.
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Machine Learning

Training set:

{(m1, c1), (m2, c2), . . . , (mn, cn)}

mi ∈ M are training messages, a class ci ∈ {S, L} is
assigned to each message.

Using the training set we construct a classification
function

f : M → {S, L}

We use this function afterwards to classify (unseen)
messages.
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ML for Spam: Problem 1

Problem: We classify text but most classification
algorithms either

require numerical data (Rn)
require a distance metric between objects
require a scalar product
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ML for Spam: Problem 1

Problem: We classify text but most classification
algorithms either

require numerical data (Rn)
require a distance metric between objects
require a scalar product

Solution: use a feature extractor to convert
messages to vectors:

φ : M → R
n
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ML for Spam: Problem 2

Problem: A spam filter may not make mistakes
False positive: a legitimate mail classified as spam
False negative: spam classified as legitimate mail
False negatives are ok, false positives are very
bad

Solution: ?
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Algorithms: Naive Bayes

The Bayes’ rule:

P (c |x) =
P (x | c)P (c)

P (x)
=

P (x | c)P (c)

P (x |S)P (S) + P (x |L)P (L)
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Algorithms: Naive Bayes

The Bayes’ rule:

P (c |x) =
P (x | c)P (c)

P (x)
=

P (x | c)P (c)

P (x |S)P (S) + P (x |L)P (L)

Classification rule:

P (S |x) > P (L |x) ⇒ SPAM
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Algorithms: Naive Bayes

Bayesian classifier is optimal, i.e. its average error
rate is minimal over all possible classifiers.

The problem is, we can never know the exact
probabilities in practice.
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Algorithms: Naive Bayes

How to calculate P (x | c)?
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Algorithms: Naive Bayes

How to calculate P (x | c)?

It is simple if the feature vector is simple:
Let the feature vector consist of a single binary
attribute xw. Let xw = 1 if a certain word w is present
in the message and xw = 0 otherwise.
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Algorithms: Naive Bayes

How to calculate P (x | c)?

It is simple if the feature vector is simple:
Let the feature vector consist of a single binary
attribute xw. Let xw = 1 if a certain word w is present
in the message and xw = 0 otherwise.

We may use more complex feature vectors if we
assume that presence of one word does not
influence the probability of presence of other words,
i.e.

P (xw, xv | c) = P (xw | c)P (xv | c)
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Algorithms: k-NN

Suppose we have a distance metric d defined for
messages.

To determine the class of a certain message m we
find its k nearest neighbors in the training set.

If there are more spam messages among the
neighbors, classify m as spam, otherwise as
legitimate mail.
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Algorithms: k-NN

k-NN is one of the few universally consistent
classification rules.

Theorem (Stone): as the size of the training set n

goes to infinity, if k → ∞, k

n
→ 0, then the average

error of the k-NN classifier approaches its minimal
possible value.
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Algorithms: The Perceptron

The idea is to find a linear function of the feature
vector f(x) = w

T
x + b such that f(x) > 0 for vectors

of one class, and f(x) < 0 for vectors of other class.

w = (w1, w2, . . . , wm) is the vector of coefficients
(weights) of the function, and b is the so-called bias.

If we denote the classes by numbers +1 and −1, we
can state that we search for a decision function

d(x) = sign(wT
x + b)
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Algorithms: The Perceptron

Start with arbitrarily chosen parameters (w0, b0) and
update them iteratively.

On the n-th iteration of the algorithm choose a
training sample (x, c) such that the current decision
function does not classify it correctly (i.e.
sign(wT

nx + bn) 6= c).

Update the parameters (wn, bn) using the rule:

wn+1 = wn + cx bn+1 = bn + c
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Algorithms: The Perceptron

Start with arbitrarily chosen parameters (w0, b0) and
update them iteratively.

On the n-th iteration of the algorithm choose a
training sample (x, c) such that the current decision
function does not classify it correctly (i.e.
sign(wT

nx + bn) 6= c).

Update the parameters (wn, bn) using the rule:

wn+1 = wn + cx bn+1 = bn + c

The procedure stops someday if the training samples
were linearly separable
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Algorithms: The Perceptron

Fast and simple.

Easy to implement.

Requires linearly separable data.
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Algorithms: SVM

The same idea as in the case of the Perceptron: find
a separating hyperplane

w
T
x + b = 0

This time we are not interested in any separating
hyperplane, but the maximal margin separating
hyperplane.
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Algorithms: SVM

Maximal margin separating hyperplane
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Algorithms: SVM

Finding the optimal hyperplane requires minimizing a
quadratic function on a convex domain — a task
known as a quadratic programme.
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Algorithms: SVM

Finding the optimal hyperplane requires minimizing a
quadratic function on a convex domain — a task
known as a quadratic programme.

Statistical Learning Theory by V. Vapnik guarantees
good generalization for SVM-s.
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Algorithms: SVM

Finding the optimal hyperplane requires minimizing a
quadratic function on a convex domain — a task
known as a quadratic programme.

Statistical Learning Theory by V. Vapnik guarantees
good generalization for SVM-s.

There are lots of further options for SVM-s (soft
margin classification, nonlinear kernels, regression).
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Algorithms: SVM

Finding the optimal hyperplane requires minimizing a
quadratic function on a convex domain — a task
known as a quadratic programme.

Statistical Learning Theory by V. Vapnik guarantees
good generalization for SVM-s.

There are lots of further options for SVM-s (soft
margin classification, nonlinear kernels, regression).

SVM-s are one of the most widely used ML
classification techniques currently.
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Practice: Measures

Denote by NS→L the number of false negatives, and
by NL→S number of false positives. The quantities of
interest are then the error rate and precision

E =
NS→L + NL→S

N
, P = 1 − E

legitimate mail fallout and spam fallout

FL =
NL→S

NL

, FS =
NS→L

NS

Note that the error rate and precision must be
considered relatively to the case of no classifier.
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Practice: Numbers

Algorithm NL→S NS→L P FL FS

Naïve Bayes 0 138 87.4% 0.0% 28.7%

k-NN 68 33 90.8% 11.0% 6.9%

Perceptron 8 8 98.5% 1.3% 1.7%

SVM 10 11 98.1% 1.6% 2.3%

Results of 10-fold cross-validation on PU1 spam corpus
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Eliminating False Positives

Algorithm NL→S NS→L P FL FS

Naïve Bayes 0 140 87.3% 0.0% 29.1%

l/k-NN 0 337 69.3% 0.0% 70.0%

SVM soft margin 0 101 90.8% 0.0% 21.0%

Results after tuning the parameters to eliminate false
positives
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Combining Classifiers

If we have two different classifiers f and g that have
low probability of false positives, we may combine
them to get a classifier with higher precision:

Classify message m as spam, if f or g classifies it as
spam.

Denote the resulting classifier as f ∪ g

Algorithm NL→S NS→L P FL FS

N.B. ∪ SVM s. m. 0 61 94.4% 0.0% 12.7%
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Combining Classifiers

If we add to f and g another classifier h with high
precision, we may use it to make f ∪ g even safer:

If f(m) = g(m), classify message m as f(m),
otherwise (if f and g give different answers) consult h
(instead of blindly setting m as spam).

In other words: classify m to the class, which is
proposed by at least 2 of the three classifiers.

Denote the classifier as (f ∩ g) ∪ (g ∩ h) ∪ (f ∩ h).

Algorithm NL→S NS→L P FL FS

2-of-3 0 62 94.4% 0.0% 12.9%
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Questions

?
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