Welcome to Machine Learning

Konstantin Tretyakov
http://kt.era.ee

AAC | M P S ummer Software Technology and B I
School 201 5 Applications Competence Center

T

http://kt.era.ee/

Data mining ,
Statistical analysis
Pattern discoventatistical learning
Machine learning , Predictive analytics,

Patadrivenmethods
Inductive reasoningattern analysis ,
Knowledge discovery from databases,
Neural networks,

V4

e

Thunderbird

Tools

Help

ot

K
Feply

1

Feply Al Forward

View: | Al

*

1

— | **Spam**: BE like a normal MAN

NETELIX

Google translate

oUnformalizable 6 pr ob

1 General rule
IF 0 1s made of plastic),
THEN 0 s not edible)

+ Application in the particular case
“ Hubicabgs
i
R u b 1 cabe s not edible

} General rule
IS olution (X) = f unctil on

+ Application in the particular case
IS_solution (?) = true

} General rule
add(x,y) = functi o

{

8
O
Jur
O

1+ Application in the particular case%
add(2,4) a

1 General rule
add(x, y) = function {

P77 g

) =

1 Particular cases g

add(2,4) =6 c
add(5,3) =8
add(1,2) =3

e

Deduction

=

Given a general rule, make a decision in a particular case

Induction

Given particular cases, find a general rule

Machine learning =

A set of techniques for dealing
with inductive problems .

MNIST dataset

http://yann.lecun.com/exdb/mnist/
Handwritten digityx: HY 2

721 0]
e

MNIST dataset

Images = load images ()
labels = load labels ()

Let us just use 1000 images
training_set = images|[0:1000]

training_labels = labels[0:1000]

MNIST dataset

> training_set|0]

array(| O, 0, O, ...,
254, 241, 198, ...])

> training_labels|O]

=/, .;

Nearest neighbor method

Training set

Y

.
A

Nearest neighbor method

Training set

Y

.
A

Nearest neighbor method
def classify (img):

similarities =
[similarity(iImg, p) for p in training_set]
| = similarities.index (max(similarities))

return training_labels [1]

Nearest neighbor method
def classify (img):

similarities =
[similarity(iImg, p) for p in training_set]
| = similarities.index (max(similarities))

return training_labels [1]

Nearest neighbor method
def classify (img):

similarities =
[similarity(iImg, p) for p in training_set]
| = similarities.index (max(similarities))

return training_labels [1]

Nearest neighbor method
def classify (img):

similarities =
[similarity(iImg, p) for p in training_set]
| = similarities.index (max(similarities))

return training_labels [1]

Nearest neighbor method
def classify (img):

similarities =
[similarity(iImg, p) for p in training_set]
| = similarities.index (max(similarities))

return training_labels [1]

Nearest neighbor method
def classify (img):

similarities =

[similarity(iImg, p) for p in training_set
| = similarities.index (max(similarities))
return training_labels [1]

def similarity (imgl, img2):
return -sum(abs(imgl - Img2))

Testing the algorithm

Testing the algorithm

t est_set = Images[1000:2000]
test_labels = labels[1000:2000]
predicted class = [classify(p) for p In test set |

n_successes =
sum(array(predicted class ==
array(test labels)

=> 843/1000

OQor 47

Scikit-learn
http://scikit-learn.org/

from sklearn . neighbors import
KNeighborsClassifier

clf = KNeighborsClassifier (n_neighbors =1)
cl f.fit (training_set , training_labels)

predicted class =cl f.predict (test set)

=> 855/1000

Voronol diagram

How can we modify the method ?

Training set

Y

.
A

Some samples may be thrown away

Training set

0.0
1.4

1.0
1.0
0.0

e 0or

.
A

Training set

Y

C

a n

add

O W

0.0
0.9
1.1
2.0
0.0

e 0or

Training set

Y

.
A

C

a n

add

O W

0.0
0.9
1.1
2.0
0.0

.. or we can SUM instead of MAX

Training set

.. or we can SUM instead of MAX

Training set

evidence (img, 4)-=
0.9 * similarity(img, tr[1])
+

0.0 * similarity(img, tr[4])

]

.. or we can SUM instead of MAX

Training set

evidence (img, 7)=
0.0 * similarity(img, tr[0])
+

2.0 * similarity(img, tr[3])

For mal | yé

L e h

For mal |l yé

O(e M e y , L (e M

D(e MM e M, 8

For mal |l yé

0D V(e O V(e h») O U(e NIB

O O(e hY) O V(e h»8

For mal |l yé

For mal |l yé

For mal |l yé

D OO e h»

L’) (},) U o F];D

Kernel -based classifier

Q) 0 WL e h»

How to find the weights?

Q) DloL e

How to find the weights?

"Q(») UL e h

+ Find weights, such that the
misclassification error rate on the training set
Isthe smallest .

How to find the weights?

"Q(») UL e h

+ Find weights, such that the
approximation to misclassification error on
the training set Isthe smallest .

How to find the weights?

"Q(») UL e h

+ Find weights, such that the
error rate on the training set isthe smallest +
there are many zero weights.

 w = argmin,,, Errori(/f,, Data), +Complexity, (W)

Support Vector Machine

from sklearn.svm import SVC

cf = SVC(kernel=0linear 0)
cl f fitt training_set , training_labels)
predicted class =cl f.predict(test set)

=> 865/1000

(m_mf

=

—\.

=15 g
:22%.

