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Quiz

 Machine learning is ___________________.

 Two important components of machine

learning are ________ and ________.

 The parameters of a machine learning model

are estimated using a ____________.

The quality of the model is measured using a 

___________.
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Quiz

 Parameter estimation methods: ___, ___, ___.

 Supervised learning denotes the problem of 

inferring a _____________ from ____ data.

 The following supervised learning methods

were mentioned yesterday:  ________
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The Land of Machine Learning
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Reasoning by analogy
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Optimization

Given a function

find the argument x resulting in the optimal 

value.
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Special cases of optimization

 Machine learning

 …
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Special cases of optimization

 Machine learning

 Algorithms and data structures

 General problem-solving

 Management and decision-making
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Special cases of optimization

 Machine learning

 Algorithms and data structures

 General problem-solving

 Management and decision-making

 Evolution

 The Meaning of Life?
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What do you need to know about 

optimization?

AACIMP Summer School                              

August 2015



What do you need to know about 

optimization?

1. Optimization is important

2. Optimization is possible
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What do you need to know about 

optimization?

1. Optimization is important

2. Optimization is possible*

* Basic techniques
 Constrained / Unconstrained

 Analytic / Iterative

 Continuous / Discrete
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Optimization task

Given a function

find the argument x resulting in the optimal 

value.
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Constrained optimization task

Given a function

find the argument x resulting in the optimal 

value, subject to
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Optimization methods

In principle, x can be anything:

 Discrete

 Value (e.g.  a name)

 Structure (e.g. a graph, plaintext)

 Finite / infinite

 Continuous*

 Real-number, vector, matrix, …

 Complex-number,  function, …
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Optimization methods

In principle, f can be anything:

 Random oracle

 Structured

 Continuous

 Differentiable

 Convex

 …
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Optimization methods

AACIMP Summer School                              

August 2015

Knowledge about f

Not much A lot

Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic
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Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic

Finding a weight-

vector w, 

minimizing the 

model error
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Knowledge about f

Not much A lot

Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic

Finding a weight-

vector w, 

minimizing the 

model error,

in a fairly general 

case
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Knowledge about f

Not much A lot

Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic

Finding a weight-

vector w, 

minimizing the 

model error,

in a very general

case



Optimization methods
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Knowledge about f

Not much A lot

Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic

Finding a weight-

vector w, 

minimizing the 

model error,

in many practical 

cases



Optimization methods
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Knowledge about f

Not much A lot

Type of x

Discrete

Combinatorial 

search:

Brute-force,

Stepwise, MCMC, 

Population-based, … 

Algorithmic

Continuous

Numeric methods:

Gradient-based,

Newton-like,

MCMC,

Population-based, …

Analytic

This lecture



Minima and maxima
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Differentiability
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Differentiability
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Differentiability
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The Most Important Observation
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The Most Important Observation
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The Most Important Observation

 This small observation gives us everything we 

need for now

 A nice interpretation of the gradient

 An extremality criterion

 An iterative algorithm for function minimization
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Interpretation of the gradient

AACIMP Summer School                              

August 2015



Interpretation of the gradient
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Extremality criterion

AACIMP Summer School                              

August 2015



Gradient descent

1. Pick random point 𝒙0

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum.

3. Otherwise,
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Gradient descent

1. Pick random point 𝒙0

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum.

3. Otherwise, make a small step downhill:

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0
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Gradient descent

1. Pick random point 𝒙0

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum.

3. Otherwise, make a small step downhill:

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0

4. … and then another step

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1

5. … and so on until
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Gradient descent

1. Pick random point 𝒙0

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum.

3. Otherwise, make a small step downhill:

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0

4. … and then another step

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1

5. … and so on until 𝛻𝑓 𝒙𝑛 ≈ 𝟎 or we’re tired.

With a smart choice of 𝜇𝑖 we’ll converge to a minimum
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Gradient descent

1.

2.

3.

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0

4.

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1
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Gradient descent

𝒙𝑖+1 ← 𝒙𝑖 − 𝜇𝑖𝛻𝑓 𝒙𝑖
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Gradient descent

∆𝒙𝑖= −𝜇𝑖𝛻𝑓 𝒙𝑖
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Gradient descent

∆𝒙𝑖= −𝜇𝒄
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Gradient descent (fixed step)
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∆𝒙𝑖= −𝜇 𝛻𝑓 𝒙𝑖



Gradient descent (fixed step)
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∆𝒙𝑖= −𝜇 𝛻𝑓 𝒙𝑖



What do you need to know about 

optimization?

1.

2.

AACIMP Summer School                              

August 2015



What do you need to know about 

optimization?

1. Optimization is important

2. Optimization is possible*

* Basic techniques
 Constrained / Unconstrained

 Analytic / Iterative

 Continuous / Discrete
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Example: Linear Regression

 Suppose we are given a set of points 

𝐷 = { 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … }
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Example: Linear Regression

 Let us find a way to predict 𝑦𝑖 from 𝑥𝑖 , using the 

following model: 

 𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖
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Example: Linear Regression

 Define prediction error of the model for point 𝑖: 
𝑒𝑖 ≔  𝑦𝑖 − 𝑦𝑖

2
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Example: Linear Regression

 The error over all training samples is therefore: 

𝐸 ≔  

𝑖

 𝑦𝑖 − 𝑦𝑖
2
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Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

 𝑦𝑖 − 𝑦𝑖
2
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Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

 𝑦𝑖 − 𝑦𝑖
2
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 𝑦𝑖 = 𝑤0 + 𝑤1𝑥𝑖



Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2
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Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

 Let us find parameter values 𝑤0, 𝑤1 by

minimizing this error function.
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Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

 Let us find parameter values 𝑤0, 𝑤1 by

minimizing this error function.
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NB:  The error function is simply – log 𝑃[𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙],
I.e. we are using maximum likelihood estimation here.



Example: Linear Regression

 The error over all training samples is therefore: 

𝐸(𝑤0, 𝑤1) ≔  

𝑖

𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

 We shall derive a gradient descent based 

optimization algorithm.
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0− ?
𝑤1− ?

 Until convergence
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝛻𝑤0
𝐸 (𝑤0, 𝑤1)

𝑤1 − 𝜇𝛻𝑤1
𝐸(𝑤0, 𝑤1)

 Until convergence
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Example: Linear Regression

 𝛻𝑤0
𝐸 𝑤0, 𝑤1 = 𝛻𝑤0

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

AACIMP Summer School                              

August 2015



Example: Linear Regression

 𝛻𝑤0
𝐸 𝑤0, 𝑤1 = 𝛻𝑤0

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

=  

𝑖

2 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖 = 2 

𝑖

𝑒𝑖
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Example: Linear Regression

 𝛻𝑤0
𝐸 𝑤0, 𝑤1 = 𝛻𝑤0

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

=  

𝑖

2 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖 = 2 

𝑖

𝑒𝑖

 𝛻𝑤1
𝐸 𝑤0, 𝑤1 = 𝛻𝑤1

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2
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Example: Linear Regression

 𝛻𝑤0
𝐸 𝑤0, 𝑤1 = 𝛻𝑤0

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

=  

𝑖

2 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖 = 2 

𝑖

𝑒𝑖

 𝛻𝑤1
𝐸 𝑤0, 𝑤1 = 𝛻𝑤1

 𝑖 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖
2

=  

𝑖

2 𝑤0 + 𝑤1𝑥𝑖 − 𝑦𝑖 𝑥𝑖 = 2 

𝑖

𝑒𝑖𝑥𝑖
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝛻𝑤0
𝐸 (𝑤0, 𝑤1)

𝑤1 − 𝜇𝛻𝑤1
𝐸(𝑤0, 𝑤1)

 Until convergence
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0 − 𝜇2 𝑖 𝑒𝑖
𝑤1 − 𝜇2 𝑖 𝑒𝑖𝑥𝑖

 Until convergence
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0 − 𝜇 𝑖 𝑒𝑖
𝑤1 − 𝜇 𝑖 𝑒𝑖𝑥𝑖

 Until convergence
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Stochastic gradient descent

 Whenever the function to be minimized is a 

sum over samples coming from some 

distribution

𝒇 𝒘 =  𝒈(𝒘, 𝒙𝒌)

the gradient is also a sum:

𝛻𝒇 𝒘 =  𝛁𝒈(𝒘, 𝒙𝒌)
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Stochastic gradient descent

 The step of the gradient descent algorithm is 

then:

∆𝒘𝒊 = −𝝁 𝛁𝒈 𝒘𝒊, 𝒙𝒌

 It is referred to as the “batch” update. It turns 

out, the minimization can also be performed by 

sampling a single random element from the 

sum on each step (the “on-line” update).

∆𝒘𝒊 = −𝝁 𝛁𝒈 𝒘𝒊, 𝒙𝒓𝒂𝒏𝒅𝒐𝒎
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:



𝑤0

𝑤1
≔

𝑤0 − 𝜇 𝑖 𝑒𝑖
𝑤1 − 𝜇 𝑖 𝑒𝑖𝑥𝑖

 Until convergence
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:

 Pick a random training sample 𝑖



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝑒𝑖
𝑤1 − 𝜇𝑒𝑖𝑥𝑖

 Until convergence
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Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:

 Pick a random training sample 𝑖



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝑒𝑖
𝑤1 − 𝜇𝑒𝑖𝑥𝑖

 Until convergence
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Widrow & Hoff, “ADALINE” 



Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:

 Pick a random training sample 𝑖



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝑒𝑖
𝑤1 − 𝜇𝑒𝑖𝑥𝑖

 Until convergence
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Widrow & Hoff, “ADALINE”, 1960 



Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:

 Pick a random training sample 𝑖



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝑒𝑖
𝑤1 − 𝜇𝑒𝑖𝑥𝑖

 Until convergence
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Widrow & Hoff, “ADALINE”, 1960 

𝑤0

𝑤1

 

1

𝑥

 𝑦

𝑒 ≔  𝑦 − 𝑦
Δ𝑤1 ≔ −𝜇𝑒𝑥1



Example: Linear Regression

 Start with 𝑤0 = 0,𝑤1 = 0

 Repeat:

 Pick a random training sample 𝑖



𝑤0

𝑤1
≔

𝑤0 − 𝜇𝑒𝑖
𝑤1 − 𝜇𝑒𝑖𝑥𝑖

 Until convergence
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Widrow & Hoff, “ADALINE”, 1960 

𝑤0

𝑤3

 

𝑥0 ≔ 1

𝑥3

 𝑦

𝑒 ≔  𝑦 − 𝑦
Δ𝑤𝑖 ≔ −𝜇𝑒𝑥𝑖

𝑥1

𝑥2

𝑤1

𝑤2



SKLearn & SGD Regression

AACIMP Summer School                              

August 2015

from sklearn.linear_model import SGDRegressor

model = SGDRegressor(alpha=0, n_iter=30)

model.fit(X, y)

w0 = model.intercept_

w = model.coef_

model.predict(X_new)



Linear regression analytically

from sklearn.linear_model import

LinearRegression

model = LinearRegression()

model.fit(X, y)
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Polynomial Regression

Say we’d like to fit a model:

𝑓 𝑥1, 𝑥2

= 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2
2 + 𝑤3𝑥1𝑥2
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Polynomial Regression

Say we’d like to fit a model:

𝑓 𝑥1, 𝑥2

= 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2
2 + 𝑤3𝑥1𝑥2

Simply transform the features and proceed as 

normal:

𝑥1, 𝑥2 → (𝑥1, 𝑥2
2, 𝑥1𝑥2)
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Overfitting
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Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

𝑒𝑖
2 + 𝜆 

𝑗=1

𝑚

𝑤𝑗
2



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

𝑒𝑖
2 + 𝜆 

𝑗=1

𝑚

𝑤𝑗
2

ℓ2-penaltyℓ2-loss



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

𝑒𝑖
2 + 𝜆 

𝑗=1

𝑚

𝑤𝑗
2

ℓ2-penaltyℓ2-loss

“Ridge Regression”



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

𝑒𝑖
2 + 𝜆 

𝑗=1

𝑚

|𝑤𝑗|

ℓ1-penaltyℓ2-loss



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

|𝑒𝑖| + 𝜆 

𝑗=1

𝑚

|𝑤𝑗|

ℓ1-penaltyℓ1-loss



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

|𝑒𝑖| + 𝜆 

𝑗=1

𝑚

|𝑤𝑗|

ℓ1-penaltyℓ1-loss

Data likelihood Model prior



Regularization
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𝐸 𝒘 ≔
1

2
 

𝑖

|𝑒𝑖| + 𝜆 

𝑗=1

𝑚

|𝑤𝑗|

>>> SGDRegressor?

Parameters 

----------

loss : str, 'squared_loss' or 'huber' ...

...

penalty : str, 'l2' or 'l1' or 'elasticnet' 

...



Exercise

Derive an SGD algorithm 

for Ridge Regression.
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Effects of Regularization
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Quiz

 Fermat’ theorem says that ______________

 ADALINE update rule:

𝚫𝒘 = _________
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Quiz

 Large number of model parameters and/or 

small data may lead to ___________.

 We address overfitting by __________.

 “Ridge regression” means __-loss and ___-

penalty.
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Quiz

 As we increase regularization strength (i.e. 

increase 𝜆), the training error _________.

 … and the test error ________.
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The Land of Machine Learning
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Optimization

Probability theory

Reasoning by analogy

Dragons



Questions?
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