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Quiz

Machine learning is

Two important components of machine
learning are and

The parameters of a machine learning model
are estimated using a
The quality of the model is measured using a

AACIMP Summer School
August 2015



Quiz

Parameter estimation methods: ] :

Supervised learning denotes the problem of
inferring a from data.

The following supervised learning methods
were mentioned yesterday:
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Optimization

Given a function

f(x):x —
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find the argument x resulting in the optimal

value.
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Special cases of optimization

» Machine learning
> ...
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Special cases of optimization
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» Machine learning

» Algorithms and data structures

» General problem-solving

» Management and decision-making
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Special cases of optimization
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» Machine learning

» Algorithms and data structures

» General problem-solving

» Management and decision-making
» Evolution

» The Meaning of Life?
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What do you need to know about

optimization?
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What do you need to know about
optimization? e

. Optimization is important
2. Optimization is possible
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What do you need to know about SR
optimization? B

. Optimization is important
2. Optimization is possible™

* Basic techniques
Constrained / Unconstrained
Analytic / lterative
Continuous / Discrete
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Optimization task

Given a function

f(x):x —
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find the argument x resulting in the optimal

value.
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Constrained optimization task

Given a function

f(x):x—R

find the argument x resulting in the optimal
value, subject to

x €(C
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Optimization methods

In principle, x can be anything:

» Discrete
Value (e.g. a name)
Structure (e.g.a graph, plaintext)
Finite / infinite

» Continuous™

Real-number, vector, matrix, ...
Complex-number, function, ...
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Optimization methods

In principle, f can be anything:

» Random oracle
» Structured

» Continuous

» Differentiable

» Convex
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Optimization methods

Type of X

Discrete

Continuous

Knowledge about f

Not much

A lot

Combinatorial
search:

Brute-force,
Stepwise, MCMC,

Population-based, ...

Algorithmic

Numeric methods:

Gradient-based,

Newton-like,
MCMC,

Population-based, ...

Analytic
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SR : {0 ¢
Optimization methods
Knowledge about f

Finding a weight- Not much A lot

vector w,

C e e Combinatorial

minimizing the search:
model error Brute-force, Algorithmic
Stepwise, MCMC,

Population-based, ...

Type of X

Numeric methods:
Gradient-based,
Continuous Newton-like, Analytic

MCMC,
Population-based, ...
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Optimization methods i
Knowledge about f
Finding a weight- Not much A lot
vector v,
C e .. Combinatorial
minimizing the search:
model error, Brute-force, Algorithmic
. s Stepwise, MCMC,
na falrly general Population-based, ...
case
Wlmeric methotisg
Gradient-based,
Continuous| Newton-like, Analytic
MCMC,
lation-baseg
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Optimization methods

Finding a weight-
vector w,
minimizing the

model error,
in a very general
case

Continuous

AN
CPJ\/T;\?TIBQ&
Knowledge about f
Not much A lot
Combinatorial
search:
Brute-force, Algorithmic
Stepwise, MCMC,
Population-based, ...
Numeric methods:
Analytic

AACIMP Summer School
August 2015




Optimization methods

Finding a weight-
vector w,
minimizing the

model error,
in many practical
cases

Continuous

Knowledge about f

Not much

A lot

Combinatorial
search:
Brute-force,
Stepwise, MCMC,
Population-based, ...

Algorithmic

Nymasicsaathods:

Gradient-based,
ewton-like

Population-based, ...

Analytic
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Optimization methods

This lecture

Continuous

AN
%‘”Tr;lhﬁ
Knowledge about f
Not much A lot
Combinatorial
search:
Brute-force, Algorithmic
Stepwise, MCMC,
Population-based, ...
Analytic
Population-based, ...
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Minima and maxima

Global maximum
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Local minimum
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Ditfferentiability
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Differentiability 5

f(x,x,) = wugaduga(xl,xz) f(x,, X

" 2) =~ b + ¢ X+ €
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Ditfferentiability

Definition. We call a function f : R”" — R differentiable at point
Xp if there exists ¢(xg) € R™ such that:

Af(xg) = f(xg + AX) — f(xg) = ¢(xy)" Ax + o(Ax)

We call ¢(xp) the gradient or derivative™ of f (at point xg) and
denote it by:

Of (xp)
19) 4

or f'(xg) or VIf(xp)
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The Most Important Observation i

Let f be differentiable and let Vf(xg) = ¢ # 0.
Take Ax = .... Then:

f(xg + AX) ~ f(xo) + ¢’ ... < f(xp).

therefore xg can’'t be a minimum of f.
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The Most Important Observation i

Let f be differentiable and let Vf(xg) = ¢ # 0.
Take Ax = — pc. Then:

f(xo + AX) ~ f(Xo) + ¢’ (—pue) < f(Xg).

therefore xp can’t be a minimum of f.
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The Most Important Observatio Xix

» This small observation gives us everything we
need for now

A nice interpretation of the gradient
An extremality criterion
An iterative algorithm for function minimization

AACIMP Summer School
August 2015



- - )
Interpretation of the gradient — %

AACIMP Summer School
August 2015



- - )
Interpretation of the gradient — %

1.0
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Extremality criterion

Theorem (Fermat). Let f be differentiable. Then
Xp IS an extremum = Vf(xg) = 0.

The converse does not hold in general.

AACIMP Summer School
August 2015



Gradient descent At

I. Pick random point x,

2. fVf(xy) = 0, then we've found an extremum.
3. Otherwise,
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Gradient descent
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I. Pick random point x,

2. fVf(xy) = 0, then we've found an extremum.
3. Otherwise, make a small step downhill:

X1 < X — UoVf(xp)
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Gradient descent

I. Pick random point x,
2. fVf(xy) = 0, then we've found an extremum.
3. Otherwise, make a small step downhill:
X1 < Xo — UoVf(xo)
4. ... and then another step
Xy & X1 — U1 Vf(xq)
5. ... and so on until
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Gradient descent

I. Pick random point x,
2. fVf(xy) = 0, then we've found an extremum.

3. Otherwise, make a small step downhill:
X1 < Xo — oV f(x0)

4. ... and then another step
Xy < X1 — U V(xq)
5. ...and so on until Vf(x,) = 0 or we're tired.

With a smart choice of u; we’ll converge to a minimum
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Gradient descent

X1 < X — UoVf(xp)

Xy « X1 — U Vf(xy)
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Gradient descent

Xiv1 < x; — wiVf(x;)
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Gradient descent

Ax;= —p;Vf(x;)
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Gradient descent

Axi
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Gradient descent (fixed step)
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Gradient descent (fixed step)

1.0
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What do you need to know about m
optimization? Bt
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What do you need to know about SR
optimization? B

. Optimization is important
2. Optimization is possible™

* Basic techniques
Constrained / Unconstrained
Analytic / lterative
Continuous / Discrete
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Example: Linear Regression

» Suppose we are given a set of points
D = {(XIJ )’1)» (Xz, )’2), }

0.4
03 F [ ]
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Example: Linear Regression

» Let us find a way to predict y; from x;, using the
following model:
Vi = wo + WiX;

12
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Example: Linear Regression

» Define prediction error of the model for point i:
e; = (J; — y:)?

12
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Example: Linear Regression

» The error over all training samples is therefore:

E = Z()A’i — ¥’
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Example: Linear Regression

» The error over all training samples is therefore:

E(wy,wy) = 2(371' — ¥i)?

AACIMP Summer School

August 2015



Example: Linear Regression

» The error over all training samples is therefore:

E(wy,wy) = 2(371' — ¥i)?

N\

Vi = Wo T+ Wi X;
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Example: Linear Regression

» The error over all training samples is therefore:

E(wg,wy) = E(Wo + wix; — yi)°
[
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Example: Linear Regression
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» The error over all training samples is therefore:

E(wg,wy) = E(Wo + wix; — yi)°
[

» Let us find parameter values wy, w; by
minimizing this error function.
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Example: Linear Regression

» The error over all training samples is therefore:

E(wg,wy) = E(Wo + wix; — yi)°
[

» Let us find parameter values wy, w; by
minimizing this error function.

NB: The error function is simply —log P|Data|Model],
l.e. we are using maximum likelihood estimation here.
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Example: Linear Regression
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» The error over all training samples is therefore:

E(wg,wy) = E(Wo + wix; — yi)°
[

» We shall derive a gradient descent based
optimization algorithm.
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Example: Linear Regression

» Start with wyg = 0,w; =0

» Repeat:
W1 o Wl_ ?

» Until convergence
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Example: Linear Regression

» Start with wyg = 0,w; =0

» Repeat:
Wy o Wp — ,U,VWOE (Wo, Wl)

Wi owy— UV, E(wo, wy)

» Until convergence
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Example: Linear Regression

AN (Wo, wy) = 7% (Xi(wo + wyx; — Vi)?)
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Example: Linear Regression tojerne

AN (Wo, wy) = 7% (Xi(wo + wyx; — Vi)?)

=22(W0+W1xi_yi) = 2291'
i i
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Example: Linear Regression

AN (Wo, wy) = 7% (Xi(wo + wyx; — Vi)?)

=22(W0+W1xi_yi) = 2291'
i i

> U E (Wo, wq) =T, (B (wp + wyx; — y:)?)
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Example: Linear Regression

AN (Wo, wy) = 7% (Xi(wo + wyx; — Vi)?)

=22(W0+W1xi_yi) = 2291'
i i

> U E (Wo, wq) =T, (B (wp + wyx; — y:)?)

= z 2(Wo + wyix; — yi)x; = 2 2 e;X;
i i
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Example: Linear Regression

» Start with wyg = 0,w; =0

» Repeat:
Wy o Wp — ,U,VWOE (Wo, Wl)

Wi owy— UV, E(wo, wy)

» Until convergence

AACIMP Summer School
August 2015



Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Wo Wy — U2 ;e

Wi wy — U2 eX;

» Until convergence
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Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Wo Wy —Ux;e;

Wi wy— U e

» Until convergence
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Stochastic gradient descent

» Whenever the function to be minimized is a
sum over samples coming from some
distribution

Fw) = > gw,x)

the gradient is also a sum:

7FW) = ) Vg(w,x,)
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Stochastic gradient descent

» The step of the gradient descent algorithm is
then:

Aw; = —ﬂz Vg(w;, xi)

» It is referred to as the “batch” update. It turns
out, the minimization can also be performed by
sampling a single random element from the
sum on each step (the “on-line” update).

Aw; = —u Vg (Wi: xrandom)

AACIMP Summer School
August 2015



Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Wo Wy —Ux;e;

Wi wy— U e

» Until convergence
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Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Pick a random training sample i
Wo Wo — HE;

Wi Wi — UeiXi

» Until convergence
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Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Pick a random training sample i
Wo Wo — HE;

Wi Wi — UeiXi

» Until convergence

Widrow & Hoff, “ADALINE”
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Example: Linear Regression

» Start with wyg = 0,w; =0
» Repeat:

Pick a random training sample i
Wo Wo — HE;

Wi Wi — UeiXi

» Until convergence

Widrow & Hoff,“ADALINE”, 1960
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Example: Linear Regression

» Start w

» Repeat 1 ‘m
Pick a y
W, 2.

" ‘/
: Wq
» Until co X

v

y—y
AW]_ = _‘u,exl
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Example: Linear Regression

» Startw -y, =1

» Repeat A
. X w ~
Pick a : : y

1
: W3
4 Untll C( x3

Awl

dl
<

=y -y
= THEX;
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SKLearn & SGD Regression

from sklearn.linear model import SGDRegressor

model = SGDRegressor (alpha=0, n 1ter=30)
model.fit (X, V)

w0 = model.intercept

w = model.coef

model .predict (X new)
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Linear regression analytically

from sklearn.linear model import
LinearRegression

model = LilinearRegression ()
model.fit (X, vVv)
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Polynomial Regression e

Say we'd like to fit a model:

f(xlixZ)

= wy + WiXxy + Woxs + WaX X,
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Polynomial Regression

>

mw
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Say we'd like to fit a model:

f(xl'xZ)

= wy + WiXxy + Woxs + WaX X,

Simply transform the features and proceed as

normal:

(x1,x2) = (x1:x22»x1x2)
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Overfitting
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Regularization

E( _1 2 2 2

5+

20 |
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Regularization

1
E(w) := 52 ef +
i

£,-loss

m
2
S
j=1

£,-penalty
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Regularization y
m
1 , ,
Ew) =3 ) et 2 ) W
l j=1
£,-loss £,-penalty

“Ridge Regression”
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Regularization

1
E(w) := 52 ef +
i

£,-loss

m
) 1wl
j=1

£1-penalty
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Regularization

1
E(w) = 52 le;| +

£,-loss

m
2> 1wl
j=1

£1-penalty
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Regularization

1
E(w) = 52 le;| +

£,-loss

Data likelihood

m
2> 1wl
j=1

£1-penalty

Model prior
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Regularization
m
1
E(w) = 52 e;| + Az |wij
i j=1

>>> SGDRegressor?
Parameters

loss : str, 'squared loss' or 'huber'
penalty : str, 'l2' or 'll' or 'elasticnet'
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Derive an SGD algorithm
for Ridge Regression.
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Effects of Regularization
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Training error
Test error
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Quiz

» Fermat’ theorem says that

» ADALINE update rule:
Aw =
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Quiz

» Large number of model parameters and/or
small data may lead to

» We address overfitting by

» “Ridge regression” means __ -loss and -
penalty.
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Quiz

» As we increase regularization strength (i.e.
increase A), the training error

» ... and the test error
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Questions?
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