
Memory-Efficient Fast Shortest Path Estimation in Large Social Networks

Volodymyr Floreskul and Konstantin Tretyakov∗ and Marlon Dumas†

Institute of Computer Science,
University of Tartu, Estonia

Abstract

As the sizes of contemporary social networks surpass
billions of users, so grows the need for fast graph al-
gorithms to analyze them. A particularly important ba-
sic operation is the computation of shortest paths be-
tween nodes. Classical exact algorithms for this prob-
lem are prohibitively slow on large graphs, which mo-
tivates the development of approximate methods. Of
those, landmark-based methods have been actively stud-
ied in recent years.
Landmark-based estimation methods start by picking a
fixed set of landmark nodes, precomputing the distance
from each node in the graph to each landmark, and stor-
ing the precomputed distances in a data structure. Prior
work has shown that the number of landmarks required
to achieve a given level of precision grows with the size
of the graph. Simultaneously, the size of the data struc-
ture is proportional to the product of the size of the
graph and the number of landmarks. In this work we
propose an alternative landmark-based distance estima-
tion approach that substantially reduces space require-
ments by means of pruning: computing distances from
each node to only a small subset of the closest land-
marks.
We evaluate our method on the DBLP, Orkut, Twitter
and Skype social networks and demonstrate that the re-
sulting estimation algorithms are comparable in query
time and potentially superior in approximation qual-
ity to equivalent non-pruned landmark-based methods,
while requiring less memory or disk space.

1 Introduction
The shortest path problem is one of the core problems in
graph theory. Effective algorithms have been developed for
it long ago, which work well on small and medium-size
graphs. In recent years more and more interest is concen-
trated on large social networks (such as Facebook, LinkedIn,
Twitter, Skype), web and knowledge graphs. The size of

∗Corresponding author.
†All authors are also affiliated with Software Technology and

Applications Competence Center (STACC), Estonia. This work
was partly supported by Microsoft/Skype Labs.
Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

these large graphs makes the basic exact shortest-path al-
gorithms prohibitively slow. Even though the recently pro-
posed exact algorithms can scale up to graphs with a few
hundred million edges (Akiba, Iwata, and Yoshida 2013),
they are still slow for contemporary social and web net-
works, which are in the order of billions or tens of billions
of edges.

Approximate shortest path estimation methods provide an
attractive alternative, which can scale to larger graphs. A
promising family of such methods are those based on the
use of landmarks (also referred to as sketches, pivots or bea-
cons in various works). In a nutshell, these methods start
by fixing a set of k landmark nodes and precomputing the
shortest path distance between each node in the graph and
each landmark. After this precomputation, an approximate
distance between any two nodes can be computed using tri-
angle inequality in O(k) time.

The accuracy of landmark-based methods can be im-
proved by using more landmarks. This, however, leads to
linear increase in memory and disk space usage with only
slight reduction of the approximation error.

In this work we describe an improvement to the landmark-
based technique that can significantly reduce memory usage
while keeping comparable accuracy and query running time.
The idea of the modification is based on the fact that in the
majority of cases it is enough to keep the distance from each
node to only a small set of the closest landmarks rather than
to all the landmarks. This optimization allows us to use a
higher number of landmarks without a corresponding linear
increase in memory usage.

2 Basic Definitions
This paper builds upon the methods and algorithms pro-
posed in the work (Tretyakov et al. 2011). In this sec-
tion we briefly review the basic definitions and the original
landmark-based algorithms proposed in that paper.

As usual, by G = (V,E) we denote a graph with n = |V |
vertices and m = |E| edges. We shall consider undirected
and unweighted graphs only, although the presented ap-
proach generalizes easily to accomodate weighted and di-
rected graphs as well.

A path πs,t of length ` = |πs,t| between two vertices
s, t ∈ V is defined as a sequence πs,t = (s, u1, . . . , u`−1, t),
where {u1, . . . , u`−1} ⊆ V and {(s, u1), . . . , (u`−1, t)}

⊆ E. The concatenation of two paths πs,t = (s, . . . , t) and
πt,v = (t, . . . , v) is the combined path πs,v = πs,t + πt,v =
(s, . . . , t, . . . , v).

The distance d(s, t) between vertices s and t is defined as
the length of the shortest path between s and t. The shortest
path distance in a graph is a metric and satisfies the triangle
inequality: for any s, t, u ∈ V

d(s, t) ≤ d(s, u) + d(u, t) . (1)

If the node u lies on or near an actual shortest path from
s to t, the upper bound is usually a good approximation
to the true distance d(s, t). This forms the core idea of all
landmark-based approximation algorithms.

The simplest of them, Landmarks-Basic, first precom-
putes for a given landmark u the distance d(s, u) between
u and each node s ∈ V in the graph. This allows to com-
pute the upper bound approximation (1) for any s and t in
constant time by simply adding two precomputed numbers.

The Landmarks-LCA algorithm, instead, precomputes a
whole shortest path tree (SPT) for the landmark node u. This
makes it possible to further increase the quality of approxi-
mation by merging the paths from the nodes s and u to the
landmark and removing a cycle if it occurs. The resulting
path will essentially pass through the “least common ances-
tor” of s and t in the shortest path tree for landmark u. The
method presented in (Qiao et al. 2014) uses the same idea.
Aside from computing distances, the method is capable of
returning actual shortest paths.

Both Landmarks-Basic and Landmarks-LCA are typically
used with a set of k different landmarks: the method is ap-
plied for each landmark separately and the best result is re-
turned.

Finally, the Landmarks-BFS method precomputes short-
est path trees like the Landmarks-LCA does. The approxi-
mation is computed, however, by collecting all nodes lying
on all shortest paths from s and t to all the landmarks, and
then running a standard breadth-first (or Dijkstra) search on
the resulting subgraph.

3 Algorithm Description
3.1 Pruned landmark trees
Traditional landmark-based methods require the computa-
tion of a shortest-path tree (SPT) for each landmark node u.
A SPT is stored by keeping a parent pointer pu[v] for each
v ∈ V , which indicates the node that follows v on the short-
est path from v to u. For the Landmarks-Basic method, only
the distance du[v] from v to the landmark needs to be kept.
In both cases, however, the space requirements for storing
the precomputed data for each landmark is proportional to
the number of nodes n in the graph. For k landmarks this
results in the total memory requirements of O(kn).

We propose to reduce this complexity by pruning the size
of the shortest path trees that need to be stored. Formally,
define a pruned landmark tree (PLT) as a shortest path tree
on a subset of nodes V ′ ⊂ V , with the landmark node as the
root.

There may be multiple pruning strategies. The method
proposed in (Vieira et al. 2007) limits trees based on depth,

Algorithm 1 PLT-PRECOMPUTE

Require: Graph G = (V,E), a set of landmarks U ⊂ V ,
number of landmarks per node r.

1: procedure PLT-PRECOMPUTE
2: for v ∈ V do . Initialize empty arrays
3: c[v]← 0
4: for u ∈ U do
5: pu[v]← nil
6: du[v]←∞
7: end for
8: end for
9: Create an empty queue Q.

10: for u ∈ U do . Initialize queue
11: Q.enqueue((u, u, 0))
12: pu[u]← u
13: du[u]← 0
14: end for
15: while Q is not empty do
16: (u, v, d)← Q.dequeue()
17: for x ∈ G.adjacentNodes(v) do
18: if pu[x] = nil and c[x] < r then
19: pu[x]← v
20: du[x]← d+ 1
21: c[x]← c[x] + 1
22: Q.enqueue((u, x, d+ 1))
23: end if
24: end for
25: end while
26: end procedure

i.e. when building the tree it ignores all nodes with distance
from the landmark larger than some fixed value. The draw-
backs of this strategy are that nodes are inequally covered
by landmarks and there may even exist nodes unconnected
to any landmarks at all, which makes it impossible to ap-
proximate distances between them and any other vertices.

In the work (Akiba, Iwata, and Yoshida 2013), a pruning
and landmark selection technique is proposed, which en-
sures that each pair of nodes in the graph would share at
least one common landmark node, located on a shortest path
between them. The resulting index can be used to quickly
compute exact shortest path distance between any pair of
nodes. The potential drawback of such an approach is the
size of the index structure. As the size of the landmark set
is not initially fixed, it can become prohibitively large for
billion-node graphs.

We propose a somewhat intermediate solution. A fixed set
of landmarks is selected first. Then for each node v ∈ V , our
algorithm ensures that the size of the associated landmark set
L(v) of that node is limited to a fixed number r of its closest
landmarks. The motivation comes from the observation that
quite frequently landmarks that are close to a node tend to
provide the best distance approximations.

This can be achieved using a modified BFS algorithm that
we call PLT-Precompute (see Algorithm 1). Similarly to the
regular BFS it is based on an iteration over a queue. This
queue contains tuples (u, v, d), where u is a landmark, v is

Figure 1: Example graph with landmarks u1, u2, u3.

Figure 2: Shortest path trees

Figure 3: Pruned landmark trees

the next node to be processed in the SPT for the landmark
u, and d is the distance from u to v. The queue is initial-
ized with the set {(u, u, 0) : u ∈ U}, which, intuitively,
corresponds to performing the BFS “in parallel” from all the
landmarks. The difference with the regular BFS is that each
node can be visited by at most r different landmarks. This is
implemented by keeping track of the set of associated land-
marks L(v) = {u : pu[v] 6= nil} for each node. No further
traversal of a node is allowed when it has already been vis-
ited by r landmarks. The algorithm stops when the queue is
empty.

After the algorithm completes, the resulting set L(v) for
each node v will contain its min(r, k′) closest landmarks,
where k′ is the number of landmarks in the connected com-
ponent of v. See Theorem 1 in Appendix A.

Figure 1 presents an example of a small graph with three
selected landmarks. Figure 2 illustrates the full shortest path
trees obtained by the traditional landmark-based appoach,
and Figure 3 demonstrates the pruned trees ensuring r = 2
landmarks per node.

3.2 Distance approximation with pruned trees
Basic method As described in Section 2, the core
landmark-based approximation technique is based on the
simple triangle inequality. The same algorithm cannot be di-
rectly applied to pruned landmark trees, as it is not guaran-

teed that for any pair of nodes (s, t) both of them will share
any common landmarks (i.e., belong to the same landmarks
shortest path trees). To address this problem we must use
a pair of landmarks u ∈ L(s) and v ∈ L(t) in the short-
est path distance approximation, including the precomputed
distance d(u, v) between the landmarks into the equation:

dapprox(s, t) ≈ d(s, u) + d(u, v) + d(v, t).

To obtain the best approximation, we iterate over all pairs of
landmarks (u, v) ∈ L(s)×L(t) and choose the one that pro-
duces the smallest approximation. We refer to this method
as the PLT-Basic, see Algorithm 2. Clearly, if there are com-
mon landmarks between s and t, for those landmarks this
method produces the same result as the Landmarks-Basic
algorithm.

Consider the pruned landmark trees from Figure 3. Sup-
pose that we want to estimate the distance between v5 and
v4. When we use landmarks u1 and u2 the resulting approxi-
mate shortest path is computed to be (v5, u1)+(u1, v1, u2)+
(u2, v4) of length 4. The two nodes are both present in the
landmark tree rooted at u3, hence the PLT-Basic algorithm
will also find the path (v5, v6, u3) + (u3, v3, v4), also of
length 4.

Cycle elimination Consider again the PLTs on Figure 3. If
we use the PLT-Basic algorithm to estimate the distance be-
tween v2 and v4 through landmarks u1 and u2, we may end

Algorithm 2 PLT-BASIC

Require: Graph G = (V,E), a set of landmarks U , pre-
computed distance du[x] from each node x to each land-
mark u ∈ L(v), precomputed distance d[u, v] for each
pair of landmarks (u, v) ∈ U × U .

1: function PLT-BASIC(s, t)
2: dmin←∞
3: for u ∈ L(s) do
4: for v ∈ L(t) do
5: d← du[s] + d[u, v] + dv[t]
6: dmin←min(dmin, d)
7: end for
8: end for
9: return dmin

10: end function

Figure 4: Cycle elimination examples.

up with a path containing a cycle, as shown on Figure 4a.
Analogously, when estimating the distance between v5 and
v6, even through the same tree of the landmark u1, the re-
sulting path will contain a cycle of length 2 (see Figure 4b).

The PLT-CE algorithm (Algorithm 3) implements the cy-
cle elimination technique to improve the results of the PLT-
BASIC. To achieve that, it computes actual paths (not just
distances), and relies on a fairly straighforward use of a stack
and a set data structures to remove the loops. The issue of ef-
ficiently obtaining pieces of the path between the landmarks
(the PATH-BETWEEN function) is discussed below in Sec-
tion 3.2. The PLT-CE method can be regarded as a pruned
version of the previous Landmarks-LCA approach.

Pruned landmark BFS Suppose that we want to get the
shortest path between nodes u1 and v3 using pruned land-
mark trees depicted in Figure 3. Both PLT-Basic and PLT-
CE algorithms can only return paths with distance 3 while
the true shortest path (u1, v2, v3) is of distance 2. The reason
is that edge (v2, v3) is not present in any of the used PLTs.

The previous Landmarks-BFS algorithm proposes to ap-
proach this problem by running a BFS on a subgraph in-
duced by the source and destination nodes and the paths
from these to all the landmarks. This method makes use of
shortcuts – edges that are present in the graph but are not
present in landmark trees and therefore requires the graph
itself. Another benefit of running BFS is that it always re-

Algorithm 3 PLT-CE
Require: Graph G = (V,E), a set of landmarks U , a PLT

parent link pu[x] precomputed for each u ∈ L(x), x ∈
V .

1: function ELIMINATE-CYCLES(π)
2: S← ∅
3: T← Empty stack
4: for x ∈ π do
5: if x ∈ S then
6: while x 6= T.top() do
7: v← T.pop()
8: Remove v from S.
9: end while

10: else
11: Add x to S
12: T.push(x)
13: end if
14: end for
15: return T , converted from a Stack to a Path
16: end function

17: function PATH-TOu(s,π)
Returns the path in the SPT pu from the vertex s
to the closest vertex q belonging to the path π

18: Result← (s) . Sequence of 1 element.
19: while s /∈ π do
20: s← pu[s]
21: Append s to Result
22: end while
23: return Result . (s, pu[s], pu[pu[s]], . . . , q), q ∈ π
24: end function

25: function PLT-CE(s,t)
26: dmin ←∞
27: for u ∈ L(s) do
28: for v ∈ L(t) do
29: π← PATH-TO(s, (u)) +
30: PATH-BETWEEN(u, v) +
31: REVERSED(PATH-TO(t, (v)))
32: d← |ELIMINATE-CYCLES(π)|
33: dmin ←min(dmin, d)
34: end for
35: end for
36: return dmin

37: end function

turns a path that does not contain cycles.
The PLT-BFS algorithm (Algorithm 4) is the adapted ver-

sion of LANDMARKS-BFS that operates on pruned land-
mark trees. This time the induced graph is constructed on
the set of vertices composed of all shortest paths from the
source and destination nodes s and t to their known land-
marks L(s) and L(t) as well as all nodes on the interland-
mark paths {πu,v|u ∈ L(s), v ∈ L(t)}.

Computing paths between landmarks All the three pro-
posed algorithms (PLT-Basic, PLT-CE, PLT-BFS) require
the precomputation of the shortest path between each pair of

Algorithm 4 PLT-BFS
Require: Graph G = (V,E), a set of landmarks U , an SPT

parent link pu[x] precomputed for each u ∈ L(x), x ∈
V .

1: function PLT-BFS(s,t)
2: S ← ∅
3: for u ∈ L(s) ∪ L(t) do
4: S ← S ∪ PATH-TO(s, (u))
5: S ← S ∪ PATH-TO(t, (u))
6: end for
7: for u ∈ L(s) do
8: for v ∈ L(t) do
9: S ← S ∪ PATH-BETWEEN(u, v)

10: end for
11: end for
12: Let G[S] be the subgraph of G induced by S.
13: Apply BFS on G[S] to find
14: a path π from s to t.
15: return |π|
16: end function

landmarks. The straightforward method to do it is to run BFS
from each landmark and save distances to all other ones.
Such a procedure, however, requires O(k(m + n)) time for
k landmarks. The linear time dependency on k makes it pro-
hibitive to use the number of landmarks significantly larger
than in previous landmark-based methods, which somewhat
reduces the benefits of the new approach.

We propose to tackle this problem by calculating ap-
proximations of interlandmark shortest path distances from
the data already collected by the PLT-PRECOMPUTE algo-
rithm. The idea is to find a witness node w[u, v] for each
pair of landmarks u ∈ U and v ∈ U such that w[u, v]
is present in the pruned landmark trees for both u and v,
i.e. {u, v} ⊂ L(w[u, v]). The approximation of the distance
between the landmarks can then be computed through this
node as du[w[u, v]]+dv[w[u, v]]. Also the approximate path
between the landmarks can be restored via the witness.

Obviously, if several witness nodes exist for a pair of land-
marks, we choose the one which minimizes the approxima-
tion. The implementation is provided in the CALCULATE-
WITNESS-NODES procedure in Algorithm 5. When this
procedure finishes, the approximated shortest paths between
the landmarks can be obtained using the function PATH-
BETWEEN.

Algorithm complexity The proposed modifications to the
traditional landmark algorithms affect their runtime com-
plexity twofold. On one hand, computation of pruned land-
mark trees requires visiting each node and each edge up to r
times and therefore pruned trees can be built in Θ(r(m+n))
time. This is more efficient compared to Θ(k(m+n)) com-
plexity of computing full SPTs in the regular landmark-
based methods. On the other hand, the need to precompute
distances between pairs of landmarks (Algorithm 5) intro-
duces an additional Θ(r2n) term.

The time per query of the original methods was linear in

Algorithm 5 PATH-BETWEEN-LANDMARKS

Require: Graph G = (V,E), a set of landmarks U , an SPT
parent link pu[x] and a distance value du[x] precom-
puted for each u ∈ L(x), x ∈ V .

1: procedure CALCULATE-WITNESS-NODES
2: for x ∈ V , u ∈ L(x), v ∈ L(x) do
3: if w[u, v] = nil or
4: (du[x] + dv[x] <
5: du[w[u, v]] + dv[w[u, v]]) then
6: w[u, v]← x
7: end if
8: end for
9: end procedure

10: function PATH-BETWEEN(u,v)
Returns the path between landmarks u and v

11: π← PATH-TO(w[u, v], (u)) +
12: REVERSED(PATH-TO(w[u, v], (v)))
13: return π
14: end function

the number of landmarks, Θ(k). In the proposed approaches
the query time does not depend on the total number of land-
marks, but rather is Θ(r2) as the search is performed over
pairs of landmarks.

Thus, both in precomputation and query time the new
approaches are comparable to the previous ones whenever
r2 ≈ k.

In terms of space complexity, the new methods require
Θ(rn) space to keep landmark data plus Θ(k2) for stor-
ing interlandmark witness nodes or distances. This compares
favourably with the Θ(kn) complexity of the previous ap-
proaches whenever n � k, which is true for most large
graphs.

4 Experimental Evaluation
4.1 Datasets
We tested our approach on four real-world social network
graphs, representing four different orders of magnitude in
terms of network size. Those are the same datasets that were
used in (Tretyakov et al. 2011), the dataset descriptions be-
low are presented verbatim from that paper.
• DBLP. The DBLP dataset contains bibliographic in-

formation of computer science publications (Ley and
Reuther 2006). Every vertex corresponds to an author.
Two authors are connected by an edge if they have co-
authored at least one publication. The snapshot from May
15, 2010 was used.

• Orkut. Orkut is a large social networking website. It is
a graph, where each user corresponds to a vertex and
each user-to-user connection is an edge. The snapshot of
the Orkut network was published by Mislove et al. in
2007 (Mislove et al. 2007).

• Twitter. Twitter is a microblogging site, which allows
users to follow each other, thus forming a network. A
snapshot of the Twitter network was published by Kwak

et al. in 2010 (Kwak et al. 2010). Although originally the
network is directed, in our experiments we ignore edge
direction.

• Skype. Skype is a large social network for peer-to-peer
communication. We say that two users are connected by
an edge if they are in each other’s contact list. The snap-
shot was obtained in February 2010.
The properties of these datasets are summarized in Ta-

ble 1. The table shows the number of vertices |V |, number
of edges |E|, average distance between vertices d (computed
on a sample vertex pairs), approximate diameter ∆, frac-
tion of vertices in the largest connected component |S|/|V |,
and average time to perform a BFS traversal over the graph
tBFS . Note that the reported time to perform a BFS differs
from the one given in (Tretyakov et al. 2011) due to the fact
that we use a different programming language (Java) to im-
plement our experiments.

Dataset DBLP Orkut Twitter Skype
|V | 770K 3.1M 41.7M 454M
|E| 2.6M 117M 1.2B 3.1B
d 6.25 5.70 4.17 6.7
∆ 23 10 24 60

|S|/|V | 85% 100% 100% 85%
tBFS 343 ms 25.4 sec 11 min 33 min

Table 1: Datasets.

4.2 Experimental setup
In each experiment we randomly choose 500 pairs of ver-
tices (s, t) from each graph and precompute the true distance
between s and t for each pair by running the BFS algorithm.
We then apply the proposed distance approximation algo-
rithms to these pairs and measure the average approximation
error and query execution time.

Approximation error is computed as (`′ − `)/`, where `′
is the approximation and ` is the actual distance. Query exe-
cution time refers to the average time necessary to compute
a distance approximation for a pair of vertices.

All experiments were run under Scientific Linux release
6.3 on a server with 8 Intel Xeon E7-2860 processors and
1024GB RAM. Only a small part of the computational re-
sources was used in all experiments.

The described methods were implemented in Java. Graphs
and intermediate data were stored on disk and accessed
through memory mapping.

4.3 Landmark selection
As the proposed methods are focused on using larger num-
ber of landmarks than the previous techniques it becomes
very important to choose scalable selection strategies. We
use two strategies in our comparisons: Random selection and
Highest degree selection.

One or both of these strategies have been used in many
previous works that involve landmark-based methods (Gold-
berg and Harrelson 2005; Potamias et al. 2009; Tretyakov et
al. 2011; Vieira et al. 2007; Zhao et al. 2010).

In random selection we make sure to use the same nodes
in the experiments with equal landmark set sizes in order to
make results more comparable.

4.4 Results
Approximation Error Figures 5, 6, 7 and 8 present the
approximation error for DBLP, Orkut, Twitter and Skype
graphs correspondingly. The error values are present for
different landmark selection strategies (rows), algorithms
(columns), numbers of landmarks per node (bar colors) and
number of landmarks (x-axis). The dashed black line is the
baseline. As the baseline for PLT-Basic we use Landmark-
Basic, for PLT-CE we use Landmark-LCA and for PLT-BFS
we use Landmark-BFS. Each of the baseline algorithms is
used with 100 landmarks and the values are obtained from
(Tretyakov et al. 2011).

Landmark selection strategy is a very significant fac-
tor for approximation quality, especially for PLT-Basic and
PLT-CE algorithms. For the PLT-BFS method, however,
randomly selected landmarks provide accuracy comparable
with the highest degree method and sometimes even outper-
form them, as in the case for the Twitter graph. This effect
was also observed for Landmark-Basic and Landmark-BFS
in (Tretyakov et al. 2011).

Higher number r of landmarks per node leads to con-
sistent reduction of the approximation error, as one might
expect. Increasing the total number of landmarks k, how-
ever, may sometimes have no or even an opposite effect, as
observed in the results for Orkut and Twitter with random
landmark selection strategy. The reason for this lies in the
fact that increasing the number of landmarks, while keep-
ing the number of landmarks r per node fixed, results in the
shrinking of pruned landmark trees and therefore using more
distant pairs of landmarks for the approximation.

The obtained results also reconfirm that the accuracy of
the different algorithm highly depends on the internal prop-
erties of graphs themselves. While the PLT-BFS method can
return exact values in almost all cases on the DBLP graph
(approximation error less than 0.01), the lowest obtained er-
ror for the Skype graph is still as high as 0.15.

The comparison with regular landmark-based algorithms
confirms the idea that our methods can achieve similar accu-
racy with much less memory usage. For example, in Skype
graph with highest degree landmark selection strategy, 5
landmarks/node and 10000 landmarks we achieve about the
same approximation error as the regular landmark-based
methods with 100 landmarks.

4.5 Query execution time
Query time was computed as the average value among 500
random queries in each graph. The total measured time ex-
cludes time needed to load the index into main memory, but
as our implementation uses the mmap Linux operating sys-
tem feature, which does not guarantee that all the data is
immediately loaded into RAM, a part of the measured time
may also include time for loading parts of the index file.

Figure 9 presents the results. The query time did not de-
pend on the number of landmarks k, hence this aspect is not

Figure 5: Approximation error for the DBLP graph

Figure 6: Approximation error for the Orkut graph

shown. It has a quadratic dependency on the number of land-
marks per node r, as expected.

Query time depends mostly on the choice of the algo-
rithm and the graph. The average query time of PLT-Basic
and PLT-CE methods never exceeds 7 milliseconds for 20
landmarks/node and is less than a millisecond for 5 land-
marks/node in all cases. Unlike these two methods, the per-
formance of the PLT-BFS highly depends on the dataset and
the landmark selection strategy. For example, with 20 land-
marks/node and the highest degree strategy the results vary
from 4 milliseconds on the DBLP graph to 4 seconds on the
Twitter graph.

4.6 Preprocessing time
The preprocessing time almost does not depend on the num-
ber of landmarks and their selection strategy. Table 2 con-
tains time values obtained during the pruned landmark trees
computation for different values of number of landmarks per
node in each dataset. The data was collected for 1000 high-

Figure 7: Approximation error for the Twitter graph

Figure 8: Approximation error for the Skype graph

est degree landmarks.
The pruned landmark tree computation heavily depends

on the size of the graph. For example, for 20 landmarks/node
it ranges from about 21 seconds in DBLP to almost 45 hours
in Skype. The quadratic dependency of the preprocessing
time on the number of landmarks per node prevents increas-
ing this parameter for very large graphs.

Graph Landmarks / Node
5 10 20

DBLP 3.6 s 8.6 s 21.1 s
Orkut 87 s 207 s 463 s
Twitter 48 m 105 m 247 m
Skype 4.4 h 18.6 h 44.9 h

Table 2: Preprocessing time for 1000 landmarks with highest
degree selection strategy

Figure 9: Average query time for the Skype graph

4.7 Memory usage
The main benefits of the proposed methods relates to mem-
ory savings. Whilst the previous approaches use Θ(kn)
space to store k complete landmark trees, the requirements
for pruned landmark trees are Θ(rn+ k2), which is signifi-
cantly smaller whenever k � n.

The described property can be observed in Table 3, which
shows the total amount of disk space consumed by the in-
dexing structures. Notice how, for small r values, the sizes
for DBLP and Orkut graph significantly depend on the to-
tal number of landmarks. For the larger Twitter and Skype
graphs this effect is practically unnoticeable. The last col-
umn of Table 3 shows the baseline scenario of using 100 full
landmark shortest path trees from (Tretyakov et al. 2011).

To store the trees we use a compact representation, where
for each node we keep r (landmark id, node id) pairs.
The nodes are identified using 32-bit integers.

5 Related Work
A large body of work exists on the problem of finding
shortest paths between nodes in a graph. The methods can
roughly be divided in to exact and approximate. The sim-
plest example of an exact shortest path method is the Dijk-
stra’s algorithm (Dijkstra 1959). In a general graph with n
nodes and m edges, this algorithm computes paths from a
single source to all other vertices in O(m) space and no less
than O(m+ n log n) time. The runtime of the approach can
be improved by running a bi-directional search (Pohl 1971)
or exploiting the A* search algorithm (Ikeda et al. 1994;
Goldberg and Harrelson 2005; Goldberg, Kaplan, and Wer-
neck 2006).

Sometimes it makes sense to precompute shortest paths
between all pairs of nodes. Numerous techniques have been
proposed for this all-pairs-shortest-path (APSP) problem
(Zwick 2001). Most of them run in O(n3) time, with a few
subcubic solutions for certain types of graphs. This is not

much better than simply running a separate single-source
shortest path (SSSP) traversal from each vertex. The latter
approach, however, can be optimized by pruning the traver-
sals in a smart way. A recent algorithm (Akiba, Iwata, and
Yoshida 2013) computes for each node a limited set of dis-
tances to landmarks, ensuring that any pair of nodes shares
at least one landmark on the shortest path between them.
Such a data structure makes it possible to answer exact short-
est path queries. Although it is computed by performing a
SSSP traversal from each node, the traversals can be heav-
ily pruned and the method is shown to scale to graphs with
millions of nodes and hundreds of millions of edges.

Approximate shortest path algorithms trade off accuracy
in exchange for better time or memory requirements. Most
approximate shortest path methods rely, in one way or an-
other, on the idea of precomputing some distances in the
graph and then using those to infer all other distances. Most
commonly the distances are precomputed to a fixed set of
landmark nodes (Cowen and Wagner 2004; Goldberg and
Harrelson 2005; Vieira et al. 2007; Potamias et al. 2009;
Das Sarma et al. 2010; Gubichev et al. 2010; Tretyakov et al.
2011; Agarwal et al. 2012; Cheng et al. 2012; Jin et al. 2012;
Fu and Deng 2013; Qiao et al. 2014), which enables the
use of the Landmarks-Basic algorithm and its derivatives.
Some variations of the basic algorithm allow to compute ac-
tual shortest paths rather than just distances (Gubichev et al.
2010; Tretyakov et al. 2011). It allows to further increase the
accuracty and support dynamic updates to the data structure.

A variation suggested in (Agarwal et al. 2012) computes,
for each node, besides the distances to the landmarks, also
the distances to all nodes in its vicinity. At the cost of some
additional memory, the resulting algorithm is capable of an-
swering shortest path queries exactly for as much as 99.9%
of node pairs in the graph.

So far there are no strong theoretical guarantees on ap-
proximation quality of landmark-based methods (Kleinberg,
Slivkins, and Wexler 2004). However, they have been shown
to provide good accuracy while keeping the query time in the
order of milliseconds, even for very large graphs (Potamias
et al. 2009; Das Sarma et al. 2010; Gubichev et al. 2010;
Tretyakov et al. 2011; Agarwal et al. 2012).

All of the approaches mentioned above, however, require
no less than O(kn) disk space to store the index structure,
where k is the number of landmarks. Reducing this memory
requirement without significantly compromising the accu-
racy or query time is the central problem addressed in this
work.

Finally, a smart choice of a landmark selection strategy
can have a significant positive effect on accuracy. Several
strategies have been proposed and evaluated in previous
works (Potamias et al. 2009; Tretyakov et al. 2011). The
general result seems to be that picking the landmarks with
the highest degree would often provide very good results at
a low computational cost.

6 CONCLUSION
In this work we introduced and evaluated pruned landmark
trees as an improvement for landmark-based estimation of
shortest paths. With respect to previous related work, this

Graph Landmarks Landmarks / Node Baseline
5 10 20 (100 SPTs)

DBLP
100 30M 59M 117M
1000 34M 63M 121M 300M
10000 411M 441M 499M

Orkut
100 118M 235M 469M
1000 122M 239M 473M 1.2G
10000 499M 616M 851M

Twitter
100 1.6G 3.2G 6.3G
1000 1.6G 3.2G 6.3G 16G
10000 2.0G 3.5G 6.6G

Skype
100 17G 34G 68G
1000 17G 34G 68G 170G
10000 18G 35G 69G

Table 3: Total PLT index memory usage

allows to achieve comparable or better accuracy and similar
query time with decreased memory and disk space usage.

For example, when compared to the baseline 100-
landmark methods from (Tretyakov et al. 2011), the pro-
posed methods with k = 1000 highest degree landmarks
and r = 20 landmarks per node show consistently better
performance in terms of accuracy on all the tested graphs,
require 2.5 times less disk space, yet only use a factor of 1.5
more time. With k = 100 and r = 5 the PLT approach un-
derperforms only slightly in terms of accuracy, yet requires
10 times less space and 5 times less time per query.

The methods were presented for the case of undirected
unweighed graphs, but they can be generalized to support
weighted and directed graphs by replacing BFS with Dijk-
stra traversal and storing two separate trees for each land-
mark – one for incoming paths and another for outgoing
ones. We also foresee that pruned landmark trees could be
dynamically updated under edge insertions and deletions us-
ing techniques similar to those outlined in (Tretyakov et al.
2011).

7 ACKNOWLEDGMENTS
The authors acknowledge the feedback from Ando Saabas
from Skype/Microsoft Labs. This research is funded by
ERDF via the Estonian Competence Center Programme and
Microsoft/Skype Labs.

References
Agarwal, R.; Caesar, M.; Godfrey, B.; and Zhao, B. Y. 2012.
Shortest paths in less than a millisecond. In Proc. of the Fifth
ACM SIGCOMM Works. on Social Networks (WOSN), 37–42.
ACM.
Akiba, T.; Iwata, Y.; and Yoshida, Y. 2013. Fast exact shortest-
path distance queries on large networks by pruned landmark
labeling. In Proceedings of the 2013 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’13,
349–360. New York, NY, USA: ACM.
Cheng, J.; Ke, Y.; Chu, S.; and Cheng, C. 2012. Efficient
processing of distance queries in large graphs: A vertex cover

approach. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’12,
457–468. New York, NY, USA: ACM.
Cowen, L. J., and Wagner, C. G. 2004. Compact roundtrip
routing in directed networks. Journal of Algorithms 50(1):79 –
95.
Das Sarma, A.; Gollapudi, S.; Najork, M.; and Panigrahy, R.
2010. A sketch-based distance oracle for web-scale graphs. In
Proceedings of the third ACM international conference on Web
search and data mining, WSDM ’10, 401–410. New York, NY,
USA: ACM.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Fu, L., and Deng, J. 2013. Graph calculus: Scalable short-
est path analytics for large social graphs through core net. In
Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
2013 IEEE/WIC/ACM International Joint Conferences on, vol-
ume 1, 417–424.
Goldberg, A. V., and Harrelson, C. 2005. Computing the short-
est path: A* search meets graph theory. In Proc. 16th ACM-
SIAM Symposium on Discrete Algorithms, 156–165.
Goldberg, A. V.; Kaplan, H.; and Werneck, R. F. 2006. Abstract
reach for A*: Efficient point-to-point shortest path algorithms.
Gubichev, A.; Bedathur, S. J.; Seufert, S.; and Weikum, G.
2010. Fast and accurate estimation of shortest paths in large
graphs. In CIKM ’10: Proceeding of the 19th ACM conference
on Information and knowledge management, 499–508. ACM.
Ikeda, T.; Hsu, M.-Y.; Imai, H.; Nishimura, S.; Shimoura, H.;
Hashimoto, T.; Tenmoku, K.; and Mitoh, K. 1994. A fast algo-
rithm for finding better routes by ai search techniques. In Proc.
Vehicle Navigation and Information Systems Conf., 291–296.
Jin, R.; Ruan, N.; Xiang, Y.; and Lee, V. E. 2012. A highway-
centric labeling approach for answering distance queries on
large sparse graphs. In Candan, K. S.; 0001, Y. C.; Snodgrass,
R. T.; Gravano, L.; and Fuxman, A., eds., SIGMOD Conference,
445–456. ACM.
Kleinberg, J.; Slivkins, A.; and Wexler, T. 2004. Triangulation
and embedding using small sets of beacons. In Proc. 45th An-
nual IEEE Symp. Foundations of Computer Science, 444–453.
Kwak, H.; Lee, C.; Park, H.; and Moon, S. 2010. What is

Twitter, a social network or a news media? In WWW ’10: Pro-
ceedings of the 19th international conference on World wide
web, 591–600. New York, NY, USA: ACM.
Ley, M., and Reuther, P. 2006. Maintaining an online biblio-
graphical database: the problem of data quality. in egc, ser. re-
vue des nouvelles technologies de l’ information, vol. rnti-e-6.
Cépadués Éditions 2006:5–10.
Mislove, A.; Marcon, M.; Gummadi, K. P.; Druschel, P.; and
Bhattacharjee, B. 2007. Measurement and Analysis of Online
Social Networks. In Proceedings of the 5th ACM/Usenix Inter-
net Measurement Conference (IMC’07).
Pohl, I. 1971. Bi-directional search. In Meltzer,
Bernard; Michie, D., ed., Machine Intelligence. Edinburgh Uni-
versity Press.
Potamias, M.; Bonchi, F.; Castillo, C.; and Gionis, A. 2009.
Fast shortest path distance estimation in large networks. In
CIKM ’09: Proceeding of the 18th ACM conference on Infor-
mation and knowledge management, 867–876. New York, NY,
USA: ACM.
Qiao, M.; Cheng, H.; Chang, L.; and Yu, J. X. 2014. Ap-
proximate shortest distance computing: A query-dependent lo-
cal landmark scheme. IEEE Transactions on Knowledge and
Data Engineering 26(1):55–68.
Tretyakov, K.; Armas-Cervantes, A.; Garcı́a-Bañuelos, L.; Vilo,
J.; and Dumas, M. 2011. Fast fully dynamic landmark-based
estimation of shortest path distances in very large graphs. In
Proceedings of the 20th ACM international conference on In-
formation and knowledge management, CIKM ’11, 1785–1794.
New York, NY, USA: ACM.
Vieira, M. V.; Fonseca, B. M.; Damazio, R.; Golgher, P. B.;
Reis, D. d. C.; and Ribeiro-Neto, B. 2007. Efficient search rank-
ing in social networks. In Proceedings of the sixteenth ACM
conference on Conference on information and knowledge man-
agement, CIKM ’07, 563–572. New York, NY, USA: ACM.
Zhao, X.; Sala, A.; Wilson, C.; Zheng, H.; and Zhao, B. Y.
2010. Orion: shortest path estimation for large social graphs. In
Proceedings of the 3rd conference on Online social networks,
WOSN’10, 9–9. Berkeley, CA, USA: USENIX Association.
Zwick, U. 2001. Exact and approximate distances in graphs
- a survey. In ESA ’01: 9th Annual European Symposium on
Algorithms, 33–48. Springer.

A Proofs
Theorem 1 The Algorithm 1 (PLT-Precompute) selects the set
L(v) of the closest landmarks for each node v ∈ V . The size of
the set |L(v)| is equal to min(r, k′), where k′ is the number of
landmarks in the connected component of v.
Before we can prove this theorem, we need an auxiliary result.

Let the set of landmarks be U = {u1, . . . , uk}. Without loss
of generality, we shall assume there is an ordering among the
landmarks (e.g. landmark u1 will be considered to be preceding
u2, denoted as u1 ≺ u2) and that the landmarks are first pushed
into the queue on lines 10–14 of the algorithm in this particular
order.

Note that at first the queue Q contains k tuples of the form
(u, u, 0), ordered according to the landmark ordering. After k it-
erations of line 16, those tuples are removed from the queue and

instead a number of elements of the form (u, x, 1) is enqueued,
where the distance value is 1 and the landmarks are again in
the correct order. Continuing in this fashion, for the dequeued
distance-1 elements, some new elements with distance value 2
are pushed again in the correct order of landmarks, and so on.
It is thus easy to see that the following must hold:

Lemma 1 Tuple (u, x, d1) can be enqueued before
(`, y, d2) only if d1 < d2 or (d1 = d2 and u ≺ `).

Proof of Theorem 1. Consider some node v ∈ V . If there
are k′ ≤ r landmarks in the connected component of v, the con-
dition on line 18 may become false for some node only after it
is already associated with all the landmarks. Thus, a full traver-
sal of the component will be performed for each landmark and
L(v) will contain all k′ of them (possibly zero, if k′ = 0).

The remainder of the proof assumes there are at least r + 1
landmarks in the same connected component as v. Suppose that
after completing the algorithm a landmark u ∈ U (from the
same connected component) is not in L(v), that is, pu[v] = nil.
We will now demonstrate that from this it follows that there
exist at least r other landmarks {`1, . . . , `r} such that for each
`i, either it is closer to v than u or at the same distance, but
preceding u (i.e. `i ≺ u).

Consider two cases. a) There exists a neighbor w of v, such
that pu[w] 6= nil. In this case a tuple (u,w, ·) must have been
added to Q at some point (as executing line 19 implies execut-
ing line 22 too). At some later moment this tuple was dequeued
on line 16 and all neighbors ofw, including v were iterated over.
We know that (u, v, ·) was not enqueued, hence at that moment
c[v] = r, which means that for r other landmarks `i a tuple
(`i, v, ·) had been enqueued already. It follows from Lemma 1
that those landmarks were either closer to v than u or at the
same distance, but preceding.

The second case. b) No neighbors of v have u in their land-
mark sets. Consider the shortest path πv,u = (v, w1, w2, . . . , u).
As we know that u ∈ L(u) (due to line 12), and u /∈ L(v), there
must exist a node wj along the path such that u /∈ L(wj), but
u ∈ L(wj+1). Repeating the logic of case a) we conclude that
there exist r distinct landmarks `i which are closer to wj than
u (or at the same distance, but preceding). But if d(wj , `i) ≤
d(wj , u), then necessarily d(v, `i) ≤ d(v, wj) + d(wj , `i) ≤
d(v, wj) + d(wj , u) = d(v, u). Hence, any of the landmarks
`i is also either closer to v than u or at the same distance but
preceding.

We have shown that if u /∈ L(v) there must be r other land-
marks closer to v than u. It remains to show that after algorithm
completes, |L(v)| = r for all nodes v.

Assume that for some v it is not the case, i.e. |L(v)| < r.
Then the condition on line 18 was never false for v. Hence, if
any landmark u was ever associated with a neighbor w of v, it
must have been also associated with v, i.e. L(w) ⊆ L(v). But
then |L(w)| < r and we may repeat this logic recursively, ulti-
mately concluding that for any other node w in the same con-
nected component, L(w) ⊆ L(v). But then also ∪wL(w) ⊆
L(v). The set ∪wL(w), however, contains all the landmarks
from the connected component. We assumed there to be more
than r of them, hence r < | ∪w L(w)| ≤ |L(v)| which is a
contradiction.

