
Fraud Detection: Methods of Analysis for

Hypergraph Data

Anna Leontjeva, Konstantin Tretyakov, Jaak Vilo

Department of Computer Science

University of Tartu

Tartu, Estonia

Email: {anna.leontjeva, kt, jaak.vilo}@ut.ee

Taavi Tamkivi

Department of Mathematical Statistics

University of Tartu

Tartu, Estonia

Email: taavi.tamkivi@ut.ee

Abstract—Hypergraph is a data structure that captures many-
to-many relations. It comes up in various contexts, one of those
being the task of detecting fraudulent users of an on-line system
given known associations between the users and types of activities
they take part in. In this work we explore three approaches
for applying general-purpose machine learning methods to such
data. We evaluate the proposed approaches on a real-life dataset
of customers and achieve promising results.

I. INTRODUCTION

An intense growth in the volume of available scientific

and commercial data is one of the hallmarks of the modern

age. Despite the similarly fast progress in the data analysis

methods, their use with discrete data, such as text and relations,

is often not straightforward and depends highly on application.

This work focuses on the classification of data structured as

a hypergraph. A hypergraph is data structure, encompassing

a set of items (vertices) and a set of relations (hyperedges)

among those items, such that each relation may encompass any

number of objects. This is in contrast to a usual graph, where

relations are always binary. A hypergraph can be represented

as a bipartite graph.

In general, the structure of hypergraph is used in the context

of a multi-label problem, where each instance can belong to

a set of labels. The most common example of a hypergraph

is the data about articles and their authors [1]. Several people

can be involved in writing the same article, as well as several

articles can have the same author. We can thus refer to authors

as vertices and co-authored publications as hyperedges of a

hypergraph.

Other examples of hypergraph can be seen in such appli-

cations as text categorization [2], protein function prediction

[3] and image classification [4]. In addition, hypergraphs

have been applied in the context of spectral graph-theoretical

methods [5], [6].

The hypergraph considered in this work is based on the data

of a certain internet voice call company, who is interested in

detecting fraudulent customers. The company has information

about the activities of its users, such as the IP-addresses

from which they connect, phone numbers they call, e-mail

they use, etc. The relationship between users and particular

IP-addresses, phone numbers and e-mails is many-to-many.

Hence, the data is a hypergraph with users corresponding

Fig. 1. Example of a colored hypergraph with 5 vertices, four hyperedges
and two colors.

to vertices and activities to hyperedges. To be more precise,

each type of activity forms a separate hypergraph, or, as we

denote it here, a separate color. Thus, we are dealing with

a colored hypergraph. The similar problem has been studied

in [7], where the anomalies of the data were detected using

unsupervised techniques.

Our objective is to learn a classifier for vertices in a colored

hypergraph which would primarily take into account the hy-

pergraph structure of a vertex’s neighborhood. The premise is

that such an approach could beneficially complement existing

classical approaches, such as simply blacklisting “bad” IP-

addresses. We approach this task by applying generic distance-

based, kernel-based and feature-vector-based techniques to

learn a classifier for vertex neighborhoods (which, themselves,

are small hypergraphs).

The obtained results are quite satisfactory given the partic-

ular task and data available.

A. Basic definitions

The main focus of this paper is the notion of a hypergraph.

Definition 1: A hypergraph H is a pair H = (V, E), where
V is a set of vertices, and E is a (multi-)set of non-empty

subsets of V, called hyperedges.

If we assign discrete labels to hyperedges, we obtain a

colored hypergraph (see Figure 1).

Definition 2: A colored hypergraph is a tuple H = (V, E,

C, c), where (V, E) is a hypergraph, C is a set of colors, and
the function c : E → C specifies a color for each hyperedge.

We call two vertices vi and vj neighbors, if there is an edge

connecting them.

Definition 3: For a hypergraph H = (V, E) the neighbor-
hood of a vertex v in a hypergraph H, N(vi), is the set

consisting of all vertices adjacent to v, i.e.

N(vi) = {vj ∈ V,∃e ∈ E : {vi, vj} ⊂ e}.

In the following we shall also use the term neighborhood to

refer to the sub-hypergraph, induced by N(vi).

II. METHODS AND MATERIALS

A. Hypergraph classification problem

Consider a colored hypergraph H = (V, E, C, c) as defined
in Definition 2. Let there be a (possibly stochastic) function

f : V → {Positive,Negative},

defining a class for each vertex. Suppose that we observe

the values of f(v) for a subset of vertices Vs. The task of

hypergraph vertex classifier learning is to estimate a predictive

model f̂ , which could predict the classes (or their probabilities)

of any vertex. In this work, we are only interested in models

f̂ , which classify a given vertex v by considering only its

neighborhood – a subgraph formed on a set of nearby vertices.

This is a common practical limitation, related to the way user

activity data can be accessed. However, the neighborhood of

a hypergraph vertex is itself a hypergraph. Thus, a model,

which classifies vertices on the basis of their neighborhoods

is essentially a hypergraph classifier.

Definition 4: Suppose we are given a training sample

D = {(hi, yi)} of colored hypergraphs (hi ∈ H) with
the corresponding class labels (yi ∼ f(hi)). The task of
hypergraph classifier learning is to estimate a predictive model

f̂ , generalizing the relationship present in the sample and thus

approximating the true f .

The complication of the problem lies in the fact that the

predictors are hypergraphs, rather than simple numeric vectors.

There are no standard recipes for handling hypergraph inputs.

Indeed, in the most general case, any two hypergraphs may be

considered as two distinct discrete inputs. Naturally, this view

is rather useless in practice. In order to be able to generalize

from the available information to future data we need to exploit

the structure of the hypergraph and explicitly represent it in

the model. Here we attempt to apply instances of distance-

based, kernel-based [8], and a feature vector representation

to solve the problem.

B. Distance-based approach

A distance is a function that measures the dissimilarity of

two objects.

Definition 5: A distance function on the set X is a function

d : X × X → R, which satisfies:

d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x), for all x, y ∈ X,

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Once a distance function is defined for a given set X , it

becomes possible to solve learning tasks involving elements

of X . The K-nearest-neighbors is the most straightforward

classifier learning algorithm in this area.

Definition 6: Let X be a set of objects and let d be a

distance function defined on X . Let D = {(xi, yi)} be a
dataset of observations (xi ∈ X), labeled by their class

(yi ∈ {−1, 1}). The K-nearest neighbors classifier classifies
new observations according to the majority class among the

K nearest neighbors of a given instance:

KNN(x) = sign





∑

i∈Nearestk(x,D)

yi



 ,

where Nearestk(x,D) denotes the set of k nearest neighbors

of x in the dataset D according to distance d.

In order to apply a distance-based method to our problem

we need to define a distance function on hypergraphs. The

most natural candidates are based on the idea of counting

edit operations that are necessary to turn one graph into

another. Unfortunately, such approaches are computationally

too demanding to be useful in practice. In order to be able to

apply the distance-based approach for the practical part of this

work we propose a simplified approximation.

Definition 7: Let H1 and H2 be two colored hypergraphs.

For each color c and each hypergraph Hi (i ∈ {1, 2}), order
the c-colored hyperedges of Hi by their size. Let s

c
i1 be the size

of the largest hyperedge of color c, sℓ
i2 the size of the second

largest hyperedge, etc. Suppose there are N c
i hyperedges of

color c in hypergraph i, and let sc
ij = 0 for j > N c

i . Define

the simplified hypergraph distance between H1 and H2 as:

d(H1, H2) =
∑

c

∞
∑

j=1

|sc
1j − sc

2j | .

C. Kernel-based approach

A similar approach to structured data classification learning

is based on kernel methods [9], [10]. Analogously to a distance

function, a kernel is a measure of similarity.

Definition 8: A function K : X × X → R, is a kernel if

there exists a Hilbert space H and a mapping φ : X → H ,

such that K(x, y) = 〈φ(x), φ(y)〉H .
When a kernel function is available, it becomes possible to

learn linear classifiers in dual form, such as Support Vector

Machines (SVMs).

Definition 9: A kernel-based linear classifier is a function

KC(x) = sign

(

α0 +
∑

i

αiyiK(x, xi)

)

where K is a kernel function, D = {(xi, yi)} is a training set
as in Definition 6, and αi is a set of model parameters to be

estimated from the data D.

In particular, in our experiments we use the SVM parameter

learning algorithm.

Various kernels have been proposed for structured data. In

particular, a considerable amount of research has been done

on graph kernels [11], [12], [13]. Wachman [14] introduced

a general kernel for colored hypergraphs based on random

walks. Unfortunately it turned out to be computationally too

demanding for our purposes and we have devised a simplified

hypergraph kernel, which is both fairly easy to compute

efficiently, and relevant for representing neighborhood hyper-

graphs for the purpose of fraud detection.

Definition 10: Define the type τ(v) of a vertex v in a

colored hypergraph H to be the multiset of colors of edges,

which contain this vertex:

τ(v) = {c(e), e ∈ E, v ⊂ e}.

Definition 11: For a colored hypergraph H and a vertex

type τ define by #(H, τ) the number of vertices of type τ

present in the hypergraph H. The simplified hypergraph kernel

is defined as:

Kh(H1, H2) =
∑

τ is a vertex type

#(H1, τ)#(H2, τ) .

The simple hypergraph kernel can be extended using stan-

dard constructions [10] to obtain polynomial and RBF ver-

sions.

Definition 12: Define a degree d polynomial hypergraph

kernel as

Khpoly(H1, H2) = (Kh(H1, H2) + 1)d.

Definition 13: Define a RBF hypergraph kernel as

Khrbf (H1, H2) = exp

(

−γ
∑

τ

(#(H1, τ) − #(H2, τ))2

)

,

where the γ is a tunable parameter.

D. Feature vector approach

The last and the most straightforward approach to learning

on structured data is simply to convert it to a fixed-length

vector of features. This allows to apply nearly any state of

the art learning algorithm. In order to examine a simpler

alternative to our distance- and kernel-based representations,

in our experiment we consider a very basic representation of

a colored hypergraph in terms of m features, where m is

the number of colors. Each feature φk(H) simply counts the
number of vertices belonging to at least one edge of color k:

φk(H) = |{v ∈ V | ∃e ∈ E : v ∈ e, c(e) = k}|.

We use linear classifier learning techniques (logistic regres-

sion and SVM)with such feature representation in our exper-

iment.

Definition 14: Given a feature representation

x → (φ1(x), φ2(x), . . . , φm(x)),

a linear classifier is a function of the form

LC(x) = w0 +

m
∑

j=1

wjφj(x) ,

where wi are model parameters to be estimated from the data.

E. Example

For clarity, let us illustrate the presented approaches using

the graph on Figure 1. Assume the hypergraph depicts a set of

five customers {A,B,C,D,E} and two kinds of activities (e.g.
phone calls, corresponding to dashed hyperedges and emails,

corresponding to solid ones). Thus, customers A and D are

known to have called the same phone and customers A,B and

E used the same e-mail in their registration data.

Consider customer A. In our application we shall only

observe its immediate neighborhood, which consists of users

{A,B,D,E} joined to A via two hyperedges. For customer B

the immediate neighborhood encompasses users {A,B,C,E}
joined by three hyperedges.

a) Approximate hypergraph distance: For A’s neighbor-

hood, the sequence of hyperedge sizes is (3, 0, . . .) for the
“solid“ type and (2, 0, . . .) for the “dashed“ type. Edge size
sequences for B’s neighborhood hypergraph is (3, 3, 0, . . .)
and (2, 0, . . .) correspondingly. Consequently, the simplified
hypergraph distance between A and B neighborhoods is

d(A,B) = |3 − 3| + |0 − 3| + |2 − 2| = 3.
b) Simple hypergraph kernel: The neighborhood of A

has 1 vertex of type {dashed}, 1 vertex of type {dashed,solid}
and 2 vertices of type {solid}. The neighborhood of B has 1

vertex of type {solid}, 1 vertex of type {solid, solid}, 1 vertex
of type {dashed, solid} and 1 vertex of type {dashed,solid,
solid}. There is thus just one common vertex type {dashed,
solid} and the value of the simplified kernel is Kh(A,B) =
1 · 1 = 1.

c) Feature representation: As there are two colors, repre-

sentation will be two-dimensional. The neighborhood of A has

φ(A) = (3, 2) and the neighborhood of B has φ(B) = (4, 2).

III. EXPERIMENTAL EVALUATION

For evaluation we applied our methods on a sample of users

of an internet voice company, testing the performance of the

suggested techniques for fraud detection.

A. Dataset

The data comprises a sample of users of the communication

network together with a list of different activities of 11 kinds.

Each activity includes a list of users, who were recently

involved in it. For example:

IP=80.1.2.3 { user1, user2, user3 }

IP=80.1.2.5 { user2, user3 }

Phone=555-10-20 { user1, user3 }

Here users user1, user2, user3 have recently (e.g. within

the last week) been known to connect from IP address

80.1.2.3. Analogously, users user1 and user3 both

dialed phone number 555-10-20 during the last week.

We precompute one-step hypergraph neighborhoods for

each user and store them in the way convenient for further

computations of the methods described.

Each user has an associated class, indicating whether he is

known to be fraudulent or not. The class distribution is highly

skewed, with the proportion of fraudulent users being less than

0.5%. To enable learning, we create a balanced training set

by selecting an equal number of both fraudulent and honest

users. As a result we obtain a training set of size up to 6000.

B. Results

We compare the following algorithms:

• Logistic regression classifier learning algorithm together

with the feature vector representation.

• SVM algorithm with three different kernels (linear, poly-

nomial of degree d = 2, RBF with γ tuned using

cross-validation) together with both the feature vector

representation and the proposed hypergraph kernel.

• K-nearest neighbors algorithm with k = 1 (as it provided
the best results) together with the proposed distance

function.

As already mentioned, we use a balanced training set to

train the algorithms. We use a similarly balanced test set of

the same size for estimating accuracy (proportion of correctly

classified users) and ROC AUC score (the probability that a

classifier will rank a randomly chosen positive instance higher

than a randomly chosen negative one). These measurements

are presented in Table I below. Note that we cannot compute

ROC AUC score for the K-nearest neighbors method, as it

does not have a parameter for trading precision for recall.

Apart from the bad performance of the KNN algorithm with

our distance function, the differences in accuracy between the

other algorithms are rather small.

Simple Kernel

Model Accuracy AUC Accuracy AUC

Logit 0.71 0.84 - -

SVM linear 0.70 0.82 0.76 0.83
SVM poly 0.65 0.75 0.66 0.80
SVM rbf 0.78 0.84 0.77 0.83

K-NN 0.55 - - -

TABLE I
ACCURACY AND ROC AUC SCORE

A practically more relevant metric is precision at 99%, com-

puted on an unbalanced (skewed) data (Table II). It directly

measures the proportion of fraudulent users which could be

discovered by the algorithm while having a false alarm rate

less than 1%. We observe that the results are much more

modest and dispersed, with the simpler approaches showing

best performance.

Examining the actual ROC curves (Figure 2) we can confirm

that despite having nearly equal AUC, some of the curves have

a steeper ascent rate at the leftmost (low false-positive) region.

Simple Kernel

Model Recall at 99 Recall at 99

Logit 0.16 -

SVM linear 0.15 0.09
SVM poly 0.09 0.01
SVM rbf 0.04 0.05

TABLE II
RECALL AT A FIXED PRECISION OF 99%

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

0.0

0.2

0.4

0.6

0.8

1.0

Model

SVM with RBF

SVM linear

SVM polynomial

Logistic

Type

Kernel

Simple

Fig. 2. ROC curve comparison of different algorithms

IV. CONCLUSION

We presented an instance of a fraud detection problem,

framed as a hypergraph classifier learning task. We described

three generic approaches for tackling the problem and applied

them on the data of an internet voice call company. Our

findings show that a system with a recall of at least 16% at a

desirably high precision value can be created. Such a system,

although not perfect on its own, may be used to enhance the

recall of existing fraud detection algorithms, which do not take

the hypergraph structure into account.

REFERENCES

[1] M. Ley and P. Reuther, “Maintaining an online bibliographical database:
the problem of data quality. in egc, ser. revue des nouvelles technologies
de l’ information, vol. rnti-e-6,” Cépadués Éditions, vol. 2006, pp. 5–10,
2006.

[2] S. Yu, K. Yu, V. Tresp, and H.-P. Kriegel, “Multi-output regularized
feature projection,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 18, pp. 1600–1613, 2006.

[3] Z. Tian, T. Hwang, and R. Kuang, “A hypergraph-
based learning algorithm for classifying gene expression and
arraycgh data with prior knowledge,” 2009. [Online]. Available:
http://bioinformatics.oxfordjournals.org/cgi/content/short/25/21/2831

[4] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” 2004.

[5] L. Sun, S. Ji, and J. Ye, “Hypergraph spectral learning for multi-label
classification,” in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, pp. 668–676. [Online]. Available:
http://doi.acm.org/10.1145/1401890.1401971

[6] G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao, “Efficient multi-
label classification with hypergraph regularization,” Computer Vision
and Pattern Recognition, IEEE Computer Society Conference on, vol. 0,
pp. 1658–1665, 2009.

[7] J. Silva and R. Willett, “Hypergraph-based anomaly detection of high-
dimensional co-occurrences,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 31, pp. 563–569, 2009.

[8] T. Gärtner, J. W. Lloyd, and P. A. Flach, “Kernels
and distances for structured data,” Machine Learning,
vol. Volume 57, pp. 205–232, 2004. [Online]. Available:
http://www.springerlink.com/content/P101U19064697034

[9] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[10] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge University Press, 2004.

[11] T. Gärtner, “Predictive graph mining with kernel methods,” in Advanced
Methods for Knowledge Discovery from Complex Data, 2005.

[12] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between
labeled graphs,” in Proceedings of the Twentieth International Confer-
ence on Machine Learning. AAAI Press, 2003, pp. 321–328.

[13] T. Horváth, T. Gärtner, and S. Wrobel, “Cyclic pattern kernels for
predictive graph mining,” in KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data

mining. New York, NY, USA: ACM, 2004, pp. 158–167.
[14] G. M. Wachman, “Kernel methods and their application to structured

data,” Tufts University, Tech. Rep., 2009.

