
U N I V E R S I T Y O F T A R T U

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Dmytro Fishman

Fast approximate max-correlation
queries

Master’s thesis (30 ECTS)

Supervisor: Konstantin Tretyakov, M.Sc.

Author: .. May “.......”, 2013

Supervisor: .. May “.......”, 2013

Approved for defence

Professor: .. May “.......”, 2013

TARTU 2013

Contents

Abstract 5

Introduction 6

1 Mathematical Background 8
1.1 Complexity and big-O notation 8
1.2 Euclidean space . 10
1.3 Correlation . 12

2 Nearest Neighbor Indexing 15
2.1 Curse of dimensionality . 16
2.2 Methods for nearest neighbor indexing 16

2.2.1 Coordinate-wise search 16
2.2.2 K-dimensional tree . 18
2.2.3 Random projection tree 22

3 The Max-correlation Problem 28
3.1 Reduction to nearest neighbor search 28

4 Experimental Evaluation 31
4.1 Time evaluation . 31
4.2 Quality evaluation . 32
4.3 Statistical significance . 35
4.4 Application in bioinformatics 35

5 Conclusion 41

Resümee (eesti keeles) 43

References 44

Appendices 47

3

4

Abstract

The task of detecting correlated items in high-dimensional datasets is com-

mon and important problem for a large variety of applications. To our knowl-

edge this task is nowadays solved using explicit enumeration of all possible

pairs of items in the dataset. Considering constantly growing amount of

data, a linear scan through all pairs can be a very slow process, taking hours

or even days on the researcher’s computer.

In this thesis we propose an approximate solution for identifying most cor-

related pairs of items that produces almost exact results in linear time. The

solution is based on nearest neighbor indexing. More precisely, we compared

the performance of the coordinate-wise search algorithm, the k-dimensional

tree and the random projection tree data structures. We conducted ex-

periments that measured the running time and quality of produced results

on simulated data. Our tests proved sufficient accuracy and linear time-

complexity for the two lattest methods. For the coordinate-wise search our

tests demonstrated quadratic time, which was still much faster than for the

brute force approach.

5

Introduction

Searching for the most correlated items among all records in the large dataset

is a common and important data analysis technique used in a variety of appli-

cations, such as image and signal processing, recommendation engines, etc.

Generally it implies calculation of all pair-wise correlations in the dataset.

If the number of items is n, and each item has d different measurements

(dimensions) then this requires at least d · n(n − 1)/2, i.e. O(d · n2) opera-

tions. Considering the constantly growing amount of data, a linear scan of

all pairs of items can be a very slow process (taking hours or even days on

the researcher’s computer).

To our knowledge, there are few documented attempts to efficiently an-

swer max-correlation queries in high-dimensional datasets. Those either ap-

ply hardware specific optimizations to speed up the calculation of all pair-wise

correlations [1], or use the solution of this problem as an intermediate step

for more complex data analysis procedures (e.g. clustering [2]) and thus pay

minor attention to the efficiency of the intermediate steps.

In this thesis we first attempt to give a broad overview of the related

mathematical terms and proofs used further in the text (Chapter 1).

We show that the problem of searching for the most correlated pair can be

successfully reduced to the problem of detecting nearest neighbors in terms

of Euclidean distance (Chapter 3).

We provide an overview of the three state-of-the-art nearest neighbor

indexing methods in Chapter 2. Our main focus is on two approximate

techniques (K-dimensional tree and random projection tree) and one exact

(coordinate-wise search).

Finally, in Chapter 4 we evaluate our method in terms of running time

and quality of final results. To measure those, we run two different types of

tests on simulated data.

Our tests proved sufficient accuracy and linear execution time for both ap-

proximate methods. Although coordinate-wise search has a quadratic time-

complexity, it still substantially outperforms the brute force method.

In order to show that our results are applicable for the real-world ap-

plications, we tested our solution on a dataset containing records related to

6

methylation values for different genes in different individuals. Experiments

prove sufficient accuracy of achieved results and capability of detecting dis-

tant genes with highly correlated expression.

7

Chapter 1

Mathematical Background

In this chapter we introduce basic mathematical notions and terms that are

necessary to understand the further material in this thesis.

1.1 Complexity and big-O notation

Complexity is a general way to assess the performance of an algorithm. The

complexity of an algorithm is defined by a numerical function T (n) that

represents execution time of an algorithm for a given input size n. Note

that our goal is to define the time taken by an algorithm without regard

to its implementation details. Typically, the running time of an algorithm

on the same inputs will vary according to following factors: computational

power of the processor, disk speed, implementation language, etc. Thus,

by measuring T (n) as the number of elementary “steps” (basic operations)

needed to achieve the final results, we can estimate efficiency of a particular

algorithm, disregarding the implementation details [3].

Here are some examples of “basic operations”:

• one fixed bit-size mathematical operation (+,-,* and /),

• one assignment to a variable,

• one comparison between two values,

• one write of a value.

Let us examine the classical example – addition of two integers. We

will be adding these integers, digit by digit (bit by bit), and will consider

each such addition as a basic “step” in our computational model. Thus,

addition of two n-digit (bit) integers requires n operations according to our

model. Therefore, the total execution time is T (n) = c · n, where c is the

8

time necessary to perform an addition of two digits. On different computers,

addition of two digits may take different time, say c1 and c2, thus the addition

of two n-digit integers takes T (n) = c1 · n and T (n) = c2 · n respectively.

It shows that even though for different machines basic “steps” take different

amounts of time, the total time T (n) grows linearly as an input size increases.

The main purpose of the complexity analysis is to classify algorithms

according to their performances. We will represent the time function T (n)

by the big-O notation to express the algorithm running time. For example,

T (n) = O(log n)

says that algorithm has a logarithmic time complexity.

Formally, any monotonic function f(n) and g(n) of positive integers,

f(n) = O(g(n)), if there exist constants c>0 and n0>0, such that

f(n) ≤ c · g(n), (1.1)

for every

n ≥ n0.

Intuitively, from (1.1) it follows that function g(n) grows as fast as func-

tion f(n) for sufficiently large n→∞. If f(n) = O(g(n)) and g(n) = O(f(n))

we say that f(n) = Θ(g(n)).

Figure (1.1) illustrates the f(n) = O(g(n)) relation.

Constant time: Θ(1)

Algorithm is said to run in constant time if its execution time does not grow

with input size. Examples are accessing an element in array or operation

with bits.

Linear time: Θ(n)

Algorithm is said to run in linear time if its running time is directly pro-

portional to the input size, i.e. time grows linearly as input size increases.

Examples are summing all elements in an array or linearly searching for one.

Quadratic time: Θ(n2)

Algorithm is said to run in quadratic time, if its running time grows twice

faster than the input size, i.e. doubling the input size results in four times

longer running time. Typical examples are bubble and insertion sort.

Figure (1.2) illustrates the complexity classes described above.

9

Figure 1.1: Function g(n) grows as fast as function f(n) for sufficiently large

n→∞

1.2 Euclidean space

Let us denote the set of all real numbers by R. The set of all pairs of real

numbers by R2, all triples by R3, and in general set of all n-tuples by Rn [4].

Thus,

Rn = R× R× ...× R.

Each element in Rn we shall call a vector and denote it by small boldface

letter:

x := (x1, x2, ..., xn).

We also will regard (x1, x2, ..., xn) as coordinates or dimensions of a vector

x, thus the space Rn, which vector x belongs to will be referred to as n-

dimensional space.

Let us define addition of two elements in Rn in the following way:

x + y := (x1, x2, ..., xn) + (y1, y2, ..., yn) = (x1 + y1, x2 + y2, ..., xn + yn),

and multiplication by a scalar (real number) α ∈ R is:

αx := (αx1, αx2, ..., αxn).

Norm and inner product

Define the norm or length of a vector x in Rn as:

10

Figure 1.2: Different types of time complexity

‖x‖ :=

√√√√ n∑
i=1

(xi)2. (1.2)

For measuring angles in Rn we define the inner product between two

vectors x and y as follows:

〈x,y〉 :=
n∑

i=1

xiyi.

The set of vectors in Rn along with addition, multiplication by a scalar,

norm and inner product form an euclidean space.

A vector x in euclidean space is a geometrical object that possess both

magnitude and direction. It can be regarded as an arrow pointing from

(0, 0, ..., 0) to (x1, x2, ..., xn). Its magnitude corresponds to its length, its

direction to the direction of the arrow. As an example let x := (1, 2) and

y := (2, 1) in R2, then Figure (1.3) represents R2 plane, which contains these

two vectors.

The inner product of two vectors, is related to the angle θ between them

as follows:

〈x,y〉 := ‖x‖‖y‖ cos θ,

After rearranging:

cos θ =
〈x,y〉
‖x‖‖y‖

. (1.3)

11

Figure 1.3: Two vectors x = (1, 2) and y = (2, 1) in R2

The distance between points in the euclidean space (“euclidean distance”)

will be denoted by d(x,y) and defined as follows:

d(x,y) = ‖x− y‖ :=

√√√√ n∑
i=1

(xi − yi)2 (1.4)

Figure (1.4) shows the particular case of the euclidean distance between

two vectors x and y in R2 [4].

1.3 Correlation

The correlation of two n-dimensional vectors x and y is defined as

corr(x,y) =

1
n

n∑
i=1

(xi − x)(yi − y)

σxσy
, (1.5)

where

x =
1

n

n∑
i

xi,

12

Figure 1.4: Distance between two points in 2-dimensional euclidean space [5]

is the mean of x and

σx =

√√√√ 1

n

n∑
i=1

(xi − x)2

is the standard deviation.

Like euclidean distance, the correlation can be used as a measure of similarity

between vectors. For example in bioinformatics, genes with highly correlated

expression may often be suspected to have similar functions.

The correlation coefficient as a cosine of an angle be-

tween vectors

In the previous section we showed that correlation of two n-dimensional vec-

tors x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) is defined

corr(x,y) =

1
n

n∑
i

(xi − x)(yi − y)√
1
n

n∑
i

(xi − x)2
√

1
n

n∑
i

(yi − y)2
.

13

Thus, if we let x′ = ((x1 − x), (x2 − x), ..., (xn − x)) and y′ = ((y1 −
y), (y2 − y), ..., (yn − y)), then

corr(x,y) =

n∑
i=1

x′iy
′
i√

n∑
i=1

(xi
′)2

√
n∑

i=1

(yi
′)2

=
〈x′,y′〉
‖x′‖ · ‖y′‖

,

which, according to (1.3) can be rewritten as follows:

corr(x,y) = cos(θ), (1.6)

where θ is the angle between x′ and y′.

From equation (1.6) it follows that in order to find the correlation between

two vectors x and y in Rn it suffices first to find x′ and y′ by subtracting the

mean value from each coordinate and then find the cosine of angle between

two centered vectors.

Intuitively if x and y are two centered n-dimensional vectors in Euclidean

space, and they point the same direction, the angle θ between them is 0 and

this results in cos(0) = 1, is the highest correlation. When the vectors are

pointing opposite directions, then cos(180) = −1, which means the vectors

are negatively correlated.

14

Chapter 2

Nearest Neighbor Indexing

Nearest neighbor indexing is a well known task of preprocessing a dataset of

vectors in way that later allows to efficiently answer nearest neighbor queries

in terms of Euclidean distance.

One of the first definitions was given probably by Knuth [6] in 1973, since

then many algorithms were developed to find a solution to this problem [7,

8, 15, 17, 13, 16]. In our work we rely on three state of the art approaches:

coordinate-wise search [12], k-dimensional tree (hereafter KD tree) [10, 11, 17]

and random projection tree (hereafter RP tree) [9, 14].

In general the nearest neighbor problem can be defined as follows: given a

set of n points P in a metric space defined over a set X and distance function

F, preprocess P to efficiently answer queries for finding the closest point p ∈
P for the given point q in X. In this work we are interested in a particular

case when X is a d-dimensional euclidean space Rd [7].

Figure 2.1: Partitioning 2-D dataset with different methods of Nearest Neigh-

bor Indexing. 1. Random Projection tree, 2. K-dimensional tree, 3. Ball

tree

15

2.1 Curse of dimensionality

According to Tsaparas [18], the problem of detecting nearest neighbors for

a given query point in a d-dimensional dataset was solved optimally for the

case of low dimensions. For example if points lie on a 2-dimensional plane

the nearest neighbor can be found in logarithmic time per query and using

just O(n) of storage space [19].

Problems arise when the number of dimensions in the dataset starts grow-

ing. In this case current knowledge [20, 18, 19, 8, 21] suggests brute force scan

through all points to be the only optimal solution, because performance of

other methods degrades exponentially in running time and/or storage space

according to Sariel Har-Peled [19]. This phenomenon is known as the “curse

of dimensionality” [22].

Thus, the problem of detecting an exact nearest neighbor is believed to

be unsolvable in linear or even subquadratic time. Instead, allowing algo-

rithms to report approximate results within some reasonable distance from

the query point (for example c times distance between q and closest point

xi) may considerably speed up the running time. Numerous studies show

that approximate solutions can be as useful as exact ones for most real-world

problems at the same time achievable in linear time [20, 18].

2.2 Methods for nearest neighbor indexing

In our work we rely on three state of the art approaches: coordinate-wise

search [12], KD tree [10, 11, 13] and RP tree [9, 14].

The following algorithms consist of two major functions: indexing and

querying. By indexing we imply the process of constructing a data structure

by assigning values (indexes) to the points in the original dataset. This data

structure later allows to efficiently reduce the search space and thus faster

answer nearest neighbor queries [23].

2.2.1 Coordinate-wise search

The method by Nene et al. [12], which we refer to as “coordinate-wise search”

uses precomputed data structure and binary search to efficiently find points

sandwiched between two parallel hyperplanes. The data structure is con-

structed using the original set of points and is depicted on Figure (2.2).

Original dataset is stored as a collection of 1-dimensional arrays such that

jth array corresponds to the jth coordinate of the point set.

To find nearest neighbors for a given query point q = (q1, q2, ..., qd) we

need to construct an initial candidate list by selecting points from the dataset

16

Figure 2.2: Data structure for efficient nearest neighbor queries. Backward

and forward maps link together ordered (sorted) and original datasets [12].

whose first coordinates lie within limits q1 − ε and q1 + ε. This is done with

the help of two binary searches, one per each limit, providing 1-dimensional

arrays are sorted [12].

Thus, in order to use binary search (see Algorithm 1) we need to sort

the collection of 1-dimensional arrays and store them in an ordered set. To

preserve the connection between coordinates, we maintain two maps. The

backward map links coordinates in the ordered set to the corresponding in

the original set and forward map that maps coordinates from the original

set to the coordinates in ordered one [12]. Note, that both maps are simple

integer arrays.

Thus, using backward map we find points that lie in between hyperplanes

positioned at q1 − ε and q1 + ε and add them to the candidate list. Next,

we trim the candidate list iterating through k = 2, 3, ..., d as follows. On the

iteration k, we check kth coordinate of the every point from the candidate list

to confirm if it lies within boundaries qk − ε and qk + ε. Each of this limits

is also found using binary search. Points whose kth coordinate lies outside

these limits are discarded from the list.

At the end of the last iteration, the candidate list contains points that

belong to the hypercube (Figure (2.3)) of side 2ε, centered at q. A linear

scan over these points finds the closest point to q. The pseudo code of the

17

Algorithm: Binary search

Input: sorted array x, searched value key, min and max values of an

array x

Output: the position of a key within x or the empty value.

while min <max do

mid ← median(min, max);

if x[mid] <key then

min ← mid + 1;

end

else

max ← mid;

end

end

if x[min] = key then

return min;

end

else
return “query point was not found”

end

Algorithm 1: Binary search

coordinate-wise search is given in Algorithm (2).

By choosing ε wisely, the intersection between sets of neighbors can be

made small enough, so that the computation is much faster than straight-

forward exhaustive search. Nevertheless, when the number of points in the

initial candidate list is large, then O(n) time needed to iterate over all of

them when checking the values of kth coordinates. This results in the overall

complexity of O(n2).

2.2.2 K-dimensional tree

The KD Tree is a binary search tree. It is a data structure, which partitions

space hierarchically with hyperplanes placed perpendicular to the coordinate

axes [13]. Each node of the tree represents a subset of points and a partition-

ing of this subset. The root node represents the whole set. Each nonterminal

node has two successors (children). These are the two subsets obtained by

the partitioning specified in the node. Terminal nodes (leaf nodes) are small,

mutually exclusive subsets of the data points that collectively form the entire

search space [17].

In 1-D case when points are represented by a single coordinate, the par-

18

Figure 2.3: Coordinate-wise search efficiently finds points inside a cube of size

2ε around the query point q. The closest point is then found by performing

an exhaustive search of all points within the cube using Euclidean distance

[12]

tition is defined by a certain value of this coordinate. All the points in the

node with coordinates less than a partitioning value are assigned to the left

branch of the tree and points with values of the coordinates greater than the

partitioning value are added to the right branch. We shall call the partition

value discriminator.

In k dimensions, each point is represented by k coordinates. Every one of

those can serve as a coordinate for partitioning (the splitting index) and thus

determine the partitioning value. Originally, the splitting index was chosen

depending on the current level of the node in the tree [10].

In this work, we randomly choose the splitting index from the interval

{1...k}. The partitioning value is then chosen to be the median of the array

of corresponding coordinates. Both the splitting index and the partitioning

19

Algorithm: Coordinate-wise search

Input: original set P, ordered set O, backward B and forward F

maps, ε, and query point q.

Output: nearest neighbor index

top ← an upper bound q[1] + ε for the value of the first coordinates;

bottom ← a lower bound q[1] - ε for the value of the first coordinate;

m ← top - bottom;

for j ← 0 to m do
initialize candidateList with points xj whose 1st coordinates lie in

between top and bottom;

end

for each new coordinate i from d do

top ← a new upper bound q[i] + ε for ith coordinate;

bottom ← a lower bound q[i] - ε for ith coordinate;

for every point xj in candidateList do

if ith coordinate of xj lie within limits top and bottom then

add xj to candidateList;

end

else

discard xj;

end

end

m ← new size of the candidateList;

end

nearestPoint ← exhaustiveSearch(candidateList,q);

return nearestPoint;

Algorithm 2: Coordinate-wise search [12]

value is stored in the node. We also introduce an upper and lower bound

for the size of the leaf nodes. That is the number of points stored in the

leaf node cannot be less than 2 and greater than 3. Code for the KD tree

construction is given in the Algorithm (4).

Let us proceed with a short example of partitioning with the KD tree.

Consider a 2-dimensional dataset that consists of seven points with coordi-

nates: (1,2), (4,3), (8,4), (3,5), (1,8), (6,5), (7,7). We start from choosing

value for the splitting index. In our example the partitioning can be done

by either the first or the second coordinate. Let the first splitting index be

1. Then, we compute the median over the array of 1st coordinates of original

points: (1,1,3,4,6,7,8), which is 4. Next, all the points whose 1st coordinate

20

Algorithm: exhaustiveSearch

Input: list of points, query point q

Output: nearestPoint

for every point xi from the list do

calculate currentDistance between q and xi;

if currentDistance <minimumDistance then

minimumDistance ← currentDistance;

nearestPoint ← i;

end

end

return nearestPoint;

Algorithm 3: Exhaustive search

is lower than 4 are added to the left branch and points with 1st coordinate

bigger than 4 are added to the right branch respectively. By now, we de-

fined points the belong to the left child ((1,2),(1,8),(3,5)) and right child

((4,3),(6,5),(7,7),(8,4)) of the root node. Note that left child cannot be split

further because sizes of its successors will not satisfy the lower bound restric-

tion (≥ 2). We shall proceed with splitting right child of the root note, by

again randomly choosing a splitting index and computing the median value

for the corresponding coordinates. If splitting index would be chosen to be

2, then the median for the array (3,4,5,7) is 5. Then, points on the left are

(4,3) and (8,4),and points on the right (6,5) and (7,7). Figure (2.4) presents

resulting KD tree.

In order to answer nearest neighbor query for the given query point q

using KD tree data structure, we need first to traverse the tree starting from

the root and and moving to either left or the right child depending on the

information stored in the splitting nodes. After we found the node which

q should be assigned to, all the points within this node are checked for the

closest in terms of euclidean distance to the query point.

When descending the tree the question arises which child to choose to

traverse next, left or right. For that we use splitting index and partitioning

value stored in the nonterminal nodes of the tree. First, the value of the

coordinate with splitting index from q is compared to the partitioning value,

if it is bigger then we proceed with choosing right children of the node and

left child otherwise.

The search time using KD tree has been proved to be O(log(n)) even in

case of randomly distributed points [17].

21

Figure 2.4: Resulting KD tree data structure for the example with seven

points in R2

2.2.3 Random projection tree

Random projection tree (RP tree) uses a similar recursive construction pro-

cedure as the KD tree. At the beginning of each new iteration, instead of

randomly choosing a splitting index it selects two random points from the

given subset and places a splitting hyperplane between them. Then, similarly

to KD tree, points to the left side of the hyperplane are added to the left

branch of tree and points to the right side are added to the right branch, see

Algorithm (6).

Formally, let z and y be uniformly chosen points from the original set of

points. A hyperplane placed between points is defined as the set

{x : 〈w, (x− p)〉 = 0} (2.1)

where

w = z− y,

p =
z + y

2
.

The hyperplane splits the points in the dataset in two - points x for which

〈w, (x− p)〉>0 go to the left branch, and those for which 〈w, (x− p)〉<0 –

22

Figure 2.5: The partitioning of a 2-D dataset using KD tree. Line thickness

denotes partitioning order (thicker lines were partition first)

to the right.

It is worth mentioning that the KD tree in some sense uses a similar

mechanism when splitting points. Let j be the index of randomly chosen

coordinate from the set {1..d}. Then the splitting hyperplane can be defined

as:

{x : 〈w,x〉 = m},

where w is a vector of weights that in case of KD tree has zeros at all

positions except the jth, and m is the partitioning value.

23

Algorithm: KDTreeIndexing

Input: set of points x

Output: instance of the KD tree

if the number of input points < limit then

return new KD tree node;

end

else

sIndex ← random(1,d);

m ← calculateMedian;

for each point xi from x do

if xi[sIndex] >m then

leftBranch.add(xi);

end

else

rightBranch.add(xi);

end

end

new node KD tree();

newNode.median = m;

newNode.splitInx = sIndex;

newNode.leftBranch ← KDTreeIndexing(leftBranch);

newNode.rightBranch ← KDTreeIndexing(rightBranch);

end

return node;

Algorithm 4: KD tree indexing

24

Algorithm: KD tree query

Input: kd tree node and query point q

Output: kd tree node containing query point

if both child nodes are empty then

return node;

end

else

splittingIndex = node.splitInx;

if q[splittingIndex] > node.median then

return searchKDtree(node.rightBranch);

end

else

return searchKDtree(node.leftBranch);

end

end

Algorithm 5: KD tree query

Figure 2.6: The partitioning of a 2-D dataset using RP tree. Points surround

by red circles correspond to the randomly chosen points based on which new

hyperplanes where placed

25

Algorithm: RP tree indexing

Input: set of original points.

Output: RP tree node

if the number of input points < limit then

return new RP tree node;

end

else

using coordinates of the original points createHyperplane();

new node();

store median and vector of weights in the node;

for each point in the original dataset do

if classifyPoint >0 then

assign point to the right branch of the tree;

end

else

assign point to the left branch of the tree;

end

end

call function RPTreeIndexing for the left branch of the node;

call function RPTreeIndexing for the right branch of the node;

end

return RP node;

Algorithm 6: Function RPTreeIndexing

Algorithm: createHyperplane

Input: set of points

Output: vector of weights w

z,y ← two random distinct points from the input dataset;

w ← z - y;

p ← z+y
2

;

w[0] ← p;

return w;

Algorithm 7: Function createHyperplane

26

Algorithm: RP tree query

Input: RP tree node, query point q.

Output: RP tree node containing query point q.

if both child nodes are empty then

return node;

end

else

if classifyPoint(q,node) then

return searchRPtree(node.rightBranch);

end

else

return searchRPtree(node.leftBranch);

end

end

Algorithm 8: RP tree query

Algorithm: classifyPoint

Input: Vector of weights w from the node, query point q

Output: true in case node is on the right from the splitting

hyperplane or false otherwise

s ←
∑
wiqi − w0;

return (s≥ 0);

Algorithm 9: Function classifyPoint

27

Chapter 3

The Max-correlation Problem

The problem of detecting most correlated pairs in large multi-dimensional

dataset is very common for a large variety of real-world applications such as

image recognition, signal processing and bioinformatics. Figure (3.1) shows

a partial view of the Promoterome Matrix by Gu et al. [24] that consists

of 9 242 target genes (rows) and 333 target factors (columns). Thus, to

find the most correlated pair among those genes we need to perform at least

9 242 · (9 242 - 1)/2 · 333, which is approximately 14 billions of operations.

The process of calculating all pair-wise correlations for this dataset may take

hours or even days on the researcher’s computer.

3.1 Reduction to nearest neighbor search

In this work we propose to improve the time needed to compute the most

correlated pair(s), by reducing the problem to the task of finding closest

points in Euclidean space.

The correlation of two vectors x and y can be computed by first stan-

dardizing these vectors and then taking their inner product.

corr(x,y) = 〈x̃, ỹ〉 , (3.1)

where

x̃ = (x− x)/σx,

ỹ = (y − y)/σy,

are standardized vectors.

The Euclidean distance between x̃ and ỹ is thus equal to:

‖x̃− ỹ‖2 = ‖x̃‖2 + ‖ỹ‖2 − 2〈x̃, ỹ〉 = 2d− 2〈x̃, ỹ〉, (3.2)

28

Figure 3.1: Partial view of the Promoterome Matrix (P-matrix) with 9,242

target genes in rows and 333 target factors in columns [24].

where ‖x̃‖2 = ‖ỹ‖2 = d due to standardization and 2〈x̃, ỹ〉 equals to 2 ·
corr(x,y) according to equation (3.1) .

From equation (3.2) it follows, that in order to find x and y with the

maximum correlation among a set of n points it suffices first to standardize

all vectors in the dataset and then find x̃ and ỹ with the smallest possible

Euclidean distance in between (see Algorithm (10)). Thus, the problem of

searching for the most correlated pair reduces to the task of finding two

closest neighbors.

29

Algorithm: Max-correlation

Input: index and query datasets

Output: indexes of two most correlated points

for every point x and y in query and index datasets do

x̃ = (x− x)/σx;

ỹ = (y − y)/σy;

end

index {x̃i}i using a nearest neighbor method;

for every point ỹi do

find nearest neighbor x̃′ for ỹi in (x̃);

currentBest = corr(x̃′, ỹi);

if currentBest > max then

max ← currentBest;

bestPair ← x̃′, ỹi

end

end

return bestPair
Algorithm 10: Max-correlation for two datasets

30

Chapter 4

Experimental Evaluation

We divided our tests into two parts. In the first part we measured the run-

ning time performance of our solution for all algorithms with the respect to

both growth of dimensionality and number of points in the dataset. In the

second part, we run experiments that captured the quality and thus relia-

bility of our solution. To show this, we computed and plotted the accuracy

of our approximate algorithms with the respect to the exact solution pre-

viously found by the the linear scan and further comparison of all possible

pairs of points(hereafter brute force approach). Therefore, we calculated the

ratio between exact correlated pair and results found by KD tree and RP

tree. Finally, we plotted counts for number of times our algorithms found

intentionally inserted pair with the highest correlation in the dataset.

All tests were run on the laptop computer (Samsung R590, Intel Core i3

2,27 GHz CPU processor and 4GB RAM).

4.1 Time evaluation

Data points for our tests were generated from the uniform distribution U(0, 100).

First, we measured the running time for the brute force approach in com-

parison with coordinate-wise search on datasets with gradually increasing

number of points from 2000 to 32000 (Figure (4.1)). Hence, even though ex-

ecution time for both algorithms is clearly quadratic, coordinate-wise search

in our implementation is at least 2 times faster than straightforward the

brute force approach. Figure (4.2) introduces analogous comparison between

KD tree and RP tree performance time for the same datasets, it follows that

both algorithms are linear in running time.

Secondly, we tested how the performance of our approach depends on

number of dimensions of the dataset. As a result, Figure (4.3) shows that the

performance of both our approximate algorithms stays linear. Alternatively

31

Figure 4.1: Execution time in seconds with the respect to the number of

points for Brute force and coordinate-wise search

Figure (4.3) presents results of this test for the exact algorithms.

To summarize the impact of size of a dataset on overall performance of

our solution, we run tests on different datasets both in terms of number of

dimensions and number of data points. Two figures were obtained, one per

each method (Figure (4.5) and Figure (4.6)). Each of those figures contain

9 curves, that represent datasets with different number of dimensions (from

20 to 100). Each of those datasets had size ranging from 1000 to 32000 data

points. Figure (4.5) represents results of the test for KD tree and Figure (4.6)

for RP tree. It can be underlined that running time of RP tree method in

our implementation rises faster than in KD tree, but still remains linear. We

did not run these tests for the brute force and coordinate-wise search due to

very long execution time.

4.2 Quality evaluation

Another important issue that we studied in this work is quality our of ap-

proximate results. To observe how accurate our answers are, we first used

32

Figure 4.2: Execution time in milliseconds with the respect to the number

of points for KD tree and RP tree

the brute force algorithm to find exact most correlated pair in nine randomly

generated datasets with fixed number of points n = 10000 and number of

dimensions d randing from 20 to 100. For each dataset we were were divid-

ing approximate results of KD and RP tree by the exact solution previously

found by brute force.

Figure (4.7) shows that even though the accuracy of both methods de-

grades with the number of dimensions, it remains quite high (over 80% ac-

curacy) even for the number of dimensions in the dataset as high as 100.

Next, we experimented with the maximum number of points that are

allowed in the leaf node (default is 3). Figures (4.8) and (4.9) illustrate how

the accuracy rate was changing with the maximum number of point changing

from 3 to 16 and the number of dimensions ranging from 20 to 100 for both

hierarchical data structures.

Alternatively, to evaluate and compare the accuracy of both our approxi-

mate methods we generated one pair with the precomputed correlation, large

33

Figure 4.3: Execution time with the respect to the number of dimensions for

the brute force and coordinate-wise search

enough to be the highest in among all within tested dataset but not too high

so algorithms would be capable of detecting it every time. It was obtained via

copying of a random row and adding a noise generated from the normal dis-

tribution with mean value 50 and standard deviation 23. This precomputed

correlated pair was not changing during the experiment.

We made 25 runs per each method each run giving 20 attempts to find

precomputed pair. Thus, 25×20 = 500 launches. Results of every run we

recorded and added to the final table. All the tests were conducted using

random dataset with fixed number of rows and columns, 30000 and 40 re-

spectively.

Figure (4.10) presents a distribution of an accuracy for KD tree and RP

tree. On the x-axis number of times inserted pair was found per on test (20

attempts - maximum), and the distribution of corresponding counts on the

y-axis. From this figure we may conclude that RP tree has higher accuracy

in comparison with KD tree data structure. From figure (4.11) it follows that

34

on average execution time of RP tree is longer than for the KD tree.

4.3 Statistical significance

When dealing with very large datasets we face the problem of multiple test-

ing, namely when searching for the most correlated pair of vectors in a large

dataset, we may obtain very high correlation values just by chance. Fig-

ure (4.12) shows the empirical structure of highest correlation values detected

in artificially generated datasets with different number of points and dimen-

sions. Each level on this figure corresponds to the best correlation coefficients

that our approximate methods found on that random data. Thus, for exam-

ple, correlation 0.7 obtained on a dataset with a size 300 000×60 is unlikely

to be related to a true association.

4.4 Application in bioinformatics

There are many important types of biological data such as methylation data

(which contains measurements of methylation values for different genomic

positions) or expression data (which measures levels of expression of genes

in different individuals). The question of finding co-expressed genes or genes

highly correlated to methylation at some sites within one or multiple datasets

is of great interest in biology. To illustrate the applicability of our method to

this case we tested our solution on a dataset containing methylation values

for 463 143 genes in 84 different individuals. KD tree running time was

317 seconds while RP produced results after 1723 seconds. All listed in the

results genes had a correlation coefficient from 0.998 to 0.79. From these

results we can conclude that correlation coefficients detected by our methods

are significantly bigger than values we could expect to obtain by chance as

shown in the Figure (4.12). Additionally, we found that some of the listed

genes are located far away, one from another, which would not be possible

to detect using existing biological tools for the data analysis.

35

Figure 4.4: Execution time with the respect to the number of dimensions for

KD tree and RP tree

36

Figure 4.5: Execution time with the respect to the growing number of di-

mensions for the KD tree

Figure 4.6: Execution time with the respect to the growing number of di-

mensions for the RP tree

37

Figure 4.7: Accuracy rate degrades with number of dimensions for both KD

and RP trees.

Figure 4.8: The accuracy rate for the KD tree data structure

38

Figure 4.9: The accuracy rate for the RP tree data structure

Figure 4.10: Accuracy density.

39

Figure 4.11: Scatterplot of dependency between time, accuracy and maxi-

mum number of points in the leaf node

Figure 4.12: Stratified structure of correlation coefficient on random data

40

Chapter 5

Conclusion

The detection of the most correlated items in large high-dimensional datasets

is very important problem for the variety of real-world applications. Nowa-

days, this task is becoming more and more relevant considering constantly

growing volume of the information in the world. To our knowledge, it is cur-

rently solved by computing all pair-wise correlations in the dataset, which

takes impractically large amount of time. In this thesis we proposed a faster

solution for this problem.

We demonstrated that it is possible to improve the time needed to find

most correlated pairs. First we standardize all vectors in the dataset and

then find the pair with the smallest possible Euclidean distance using nearest

neighbor indexing.

Next, we proposed a solution to the original problem that is based on

nearest neighbor indexing. In particular, we implemented three state-of-

the-art methods: coordinate-wise search (exact), KD tree and RP tree data

structures (approximate). All these algorithms start with building a data

structure by assigning indexes to the points in a given dataset that later

allows to efficiently find nearest neighbors to the query point. In our work

we focused mostly on last two approximate methods.

We run two different types of tests on simulated data in order to measure

time and quality of the proposed solution. To evaluate its running time we

compared performances of all three methods with the one for baseline ap-

proach. Both hierarchical data structures showed linear time-complexity for

all tests. Although coordinate-wise search has a quadratic time-complexity,

it still substantially outperforms the brute force method. In terms of the

quality of obtained results tests show that it degrades with the size of the

input set for both approximate methods, but nevertheless stays sufficiently

high to be useful for the most of the real-world problems.

To demonstrate this, we tested our solution on a dataset containing

41

records related to methylation values of different genes in different individ-

uals. Results show that our approximate methods are capable of detecting

pairs of genes with highly correlated expression that belong to distant re-

gions, that was not possible using existing bioinformatical tools.

42

Kiired ligikaudsed päringud maksimaalse

korrelatsiooni leidmiseks

Magistritöö (30 EAP)

Dmytro Fishman

Resümee

Kõige korreleeritumate paaride leidmine suurtes kõrgemõõtmilistes andmestikkes

on väga oluline ülesanne, mis leiab kasutust paljudes reaalmaailma rak-

endustes. Arvestades sellega, et tänapäeval andmete maht kiiresti suureneb,

see ülesanne muutub veelgi asjakohasemaks. Meie teadmiste järgi põhineb

praegune lahendus sellele küsimusele läbivaatusel, mis arvutab korrelatsiooni

iga võimaliku andmepunkti paari jaoks. See lähenemine on liiga aeglane sell-

eks, et kasutada seda praktikas.

Me demonstreerime, et korrelleerituma paari saab leida, standartiseerides

kõik vektorid andmestikus, ning otsides paari, mille eukleidiline vahekaugus

on minimaalne.

Järgmisena me uurime selle idee realiseerimist lähima naabri indekseerim-

ismeetodite abil. Me realiseerisime kolm kaasaegset meetodit: koordinaatide

kaupa otsimine (täpne meetod), KD puu ja RD puu struktuurid (ligikaudsed

meetodid). Kõik need algoritmid alustavast sellest, et eelarvutavad (indek-

seerivad) andmeid etteantud struktuuri abil. See lubab efektiivselt otsida iga

punkti lähimat naabrit.

Me viisime läbi kahte erinevat testi kunstlike andmestike peal selleks

et mõõta algoritmide töötamise aega ja täpsust. Tööaega hindamiseks me

võrdlesime kõigi kolme meetodite jõudlust ühe ja sama põhimeetodi jõudlusega.

Mõlemad hierarhilised andmestruktuurid näitasid lineaarset ajakeerukust kõikide

testide puhul, jippii. Koordinaatidel baseeruv meetod on aga ruutkeerukusega,

kuid see töötab ikka paremini kui primitiivne läbivaatus. Testid näitavad

et mõlema algoritmi poolt leitavate vastuse täpsus väheneb andmestiku su-

urendamisega, aga see täpsus on piisavalt kõrge, et kasutada neid algoritme

reaalmaailma ülesannete lahendamiseks.

43

Bibliography

[1] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correla-

tion for massive time-series data. In Proceedings of the 2010 interna-

tional conference on Management of data, pages 171–182. ACM, 2010.

[2] Meelis Kull, Jaak Vilo, et al. Fast approximate hierarchical clustering

using similarity heuristics. BioData mining, 1(1):1–14, 2008.

[3] Victor S. Adamchik. Computer Science - 121. Computer Science De-

partment, Carnegie Mellon University, Pittsburgh, PA., December 2009.

[4] Konstantin Tretyakov. A Brief Introduction to Matrix Algebra. Institute

of Computer Science, University of Tartu.

[5] Frank Jones. Honors Calculus. Rice University, 2004.

[6] Donald E Knuth. Sorting and searching (the art of computer program-

ming volume 3), 1973.

[7] Jon M Kleinberg. Two algorithms for nearest-neighbor search in high

dimensions. In Proceedings of the twenty-ninth annual ACM symposium

on Theory of computing, pages 599–608. ACM, 1997.

[8] Piotr Indyk. Nearest neighbors in high-dimensional spaces. 2004.

[9] Sanjoy Dasgupta and Yoav Freund. Random projection trees and low

dimensional manifolds. In Proceedings of the 40th annual ACM sympo-

sium on Theory of computing, pages 537–546. ACM, 2008.

[10] Jon Louis Bentley. Multidimensional binary search trees in database

applications. Software Engineering, IEEE Transactions on, (4):333–340,

1979.

[11] Peter N Yianilos. Data structures and algorithms for nearest neighbor

search in general metric spaces. In Proceedings of the fourth annual

ACM-SIAM Symposium on Discrete algorithms, pages 311–321. Society

for Industrial and Applied Mathematics, 1993.

44

[12] Sameer A Nene and Shree K Nayar. A simple algorithm for nearest

neighbor search in high dimensions. Pattern Analysis and Machine In-

telligence, IEEE Transactions on, 19(9):989–1003, 1997.

[13] Rina Panigrahy. Nearest neighbor search using kd-trees. citeseerx. ist.

psu. edu, 2006.

[14] Hendra Gunadi. Comparing nearest neighbor algorithms in high-

dimensional space. 2011.

[15] B. S. Kim and S. B. Park. A fast k nearest neighbor finding algorithm

based on the ordered partition. IEEE Trans Pattern Anal Mach Intell,

8(6):761–766, Jun 1986.

[16] Andrew W Moore. An intoductory tutorial on kd-trees. Extract from

Andrew Moore’s PhD Thesis: Effcient Memory based Learning for Robot

Control, 1991.

[17] Jerome H Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An

algorithm for finding best matches in logarithmic expected time. ACM

Transactions on Mathematical Software (TOMS), 3(3):209–226, 1977.

[18] Panayiotis Tsaparas. Nearest Neighbor Search in Multidimensional

Spaces: Depth Oral Report. University of Toronto, Department of Com-

puter Science, 1999.

[19] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate near-

est neighbor: Towards removing the curse of dimensionality. Theory OF

Computing, 8:321–350, 2012.

[20] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and

Angela Wu. An optimal algorithm for approximate nearest neighbor

searching. In Proceedings of the fifth annual ACM-SIAM symposium on

Discrete algorithms, pages 573–582. Society for Industrial and Applied

Mathematics, 1994.

[21] Marius Muja and David G Lowe. Fast approximate nearest neighbors

with automatic algorithm configuration. pages 331–340, 2009.

[22] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative

analysis and performance study for similarity-search methods in high-

dimensional spaces. In Proceedings of the international conference on

very large data bases, pages 194–205. INSTITUTE OF ELECTRICAL

& ELECTRONICS ENGINEERS, 1998.

45

[23] On effective conceptual indexing and similarity search in text data, 2001.

[24] Quan Gu, Shivashankar Nagaraj, Nicholas Hudson, Brian Dalrymple,

and Antonio Reverter. Genome-wide patterns of promoter sharing and

co-expression in bovine skeletal muscle. BMC genomics, 12(1):23, 2011.

46

Appendices

Appendix A. Program code (on a compact disc)

47

Licence

I, Fishman Dmytro (date of birth: 06.02.1991),

1. herewith grant the University of Tartu a free permit (non-exclusive

licence) to:

(a) reproduce, for the purpose of preservation and making available

to the public, including for addition to the DSpace digital archives

until expiry of the term of validity of the copyright, and

(b) make available to the public via the university’s web environment,

including via the DSpace digital archives, as of 20.05.2013 until

expiry of the term of validity of the copyright,

Fast approximate max-correlation queries

supervised by Konstantin Tretyakov

2. I am aware of the fact that the author retains these rights.

3. This is to certify that granting the non-exclusive licence does not in-

fringe the intellectual property rights or rights arising from the Personal

Data Protection Act.

Tartu, 20.05.2013

48

	Abstract
	Introduction
	Mathematical Background
	Complexity and big-O notation
	Euclidean space
	Correlation

	Nearest Neighbor Indexing
	Curse of dimensionality
	Methods for nearest neighbor indexing
	Coordinate-wise search
	K-dimensional tree
	Random projection tree

	The Max-correlation Problem
	Reduction to nearest neighbor search

	Experimental Evaluation
	Time evaluation
	Quality evaluation
	Statistical significance
	Application in bioinformatics

	Conclusion
	Resümee (eesti keeles)
	References
	Appendices

