
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Priit Kallas

Probabilistic Localization of a Soccer Robot

Masterôs thesis (30 ECTS)

Supervisor: Konstantin Tretyakov, M.Sc.

Autor: éééééééééé. ñé..ò mai 2013

Juhendaja: éééééééé ñé..ò mai 2013

Lubada kaitsmisele

Professor: .éééééééé ñé..ò mai 2013

TARTU 2013

 2

 3

Contents

Introduction .. 5

1 Bayesian filtering .. 7

1.1 Statistics background ... 7

1.1.1 Bayesô rule ... 9

1.1.2 Expectation and covariance ... 10

1.2 Bayes filters ... 10

1.2.1 Intuitive explanation ... 10

1.2.2 Controls and measurements .. 12

1.2.3 Markov assumption ... 13

1.2.4 Belief, prediction and correction ... 14

1.2.5 Bayes filter ... 15

1.3 Kalman filter .. 16

1.3.1 Gaussian filters .. 16

1.3.2 Introduction .. 17

1.3.3 Algorithm ... 17

1.3.4 Visualization .. 19

1.3.5 Interactive example ... 20

1.3.6 Extensions ... 21

1.4 Particle filter ... 22

1.4.1 Introduction .. 22

1.4.2 Intuitive explanation ... 23

1.4.3 Algorithm ... 27

1.4.4 Density estimation ... 28

1.4.5 Resampling ... 29

2 Localization of a soccer robot model .. 31

2.1 The Robotex soccer robot and its environment .. 31

2.1.1 The environment.. 31

2.1.2 The robot ... 33

2.2 Motion model and odometry .. 34

2.3 Robotex simulator .. 37

2.3.1 JavaScript implementation ... 37

2.3.2 Odometry localizer ... 41

 4

2.3.3 Direct measurement model ... 43

2.3.4 Intersection localizer ... 45

2.3.5 Kalman filter localizer .. 50

2.3.6 Particle filter localizer .. 57

3 Algorithm performance comparison ... 67

3.1 Simulator setup ... 67

3.2 Test methodology .. 69

3.3 Simulator parameters .. 69

3.4 Experiments .. 70

3.4.1 Odometer and intersection based localizer .. 70

3.4.2 Kalman filter localizer .. 72

3.4.3 Particle filter localizer .. 76

3.5 Performance comparison .. 82

4 Physical robot experiments ... 87

4.1 Implementation .. 87

4.2 Test setup ... 87

4.3 Tuning ... 89

4.4 Results .. 90

4.5 Future work ... 95

Summary .. 99

Res¿mee (eesti keeles) ... 101

References ... 103

 5

Introduction

Robot localization techniques attempt to solve the problem of estimating mobile

robot position and orientation (pose) relative to an external frame of reference.

Localizing the robot is a prerequisite step to smart decision making: before answering

ñWhere am I goingò and ñHow I should get thereò, one needs to first have at least an

estimation of ñWhere am I?ò [1].

As robots are given ever more complicated tasks in natural and dynamically

changing environments, the control algorithms must cope with the inherent uncertainty

of such tasks. For example, the Google self-driving cars [20] must be able to navigate

various streets and motorways in changing weather, road conditions and lighting, with

other cars and pedestrians on the road that often behave unpredictably. It is impossible

to model and predict such complex systems precisely, so statistical algorithms have

been developed that explicitly account for the uncertainties and, instead of providing a

single ñbest guessò, define probability distributions over all the possible states. These

methods perform recursive state estimation, where data from previous states is taken

into account along with control inputs and sensory data. This information is fused

together in time so the robot can incrementally learn its location over several steps of

movement and measurements.

The uncertainty of such complex systems arises from the fact that all models of

the world are approximate. For example, one might express the kinematics of a car

using a simple ñbicycle modelò where the two rear wheels are fixed and the two front

wheels are turning and abide to Ackermann steering geometry [2], but this is only a

crude approximation of the complex interplay of forces involved in the suspension,

tires, etc. Statistical models explicitly acknowledge and take these model imperfections

into account. Movement actions generally increase the uncertainty of the system about

its location. Measurements, on the contrary, provide information and reduce

uncertainty. Another major source of uncertainty comes from the imperfections of the

various sensors used to get information about the environment. Most sensors have

limited resolution, range and are susceptible to noise that needs to be filtered out.

Popular sensors often used for localization purposes include ultrasonic sonars and

lasers for distance measurement, RFID and barcode readers, as well as cameras

employing computer vision algorithms. Additional useful information is often extracted

from odometer systems, where actual motion of the robot is calculated from its

actuators feedback. For example, given a two-wheeled differential drive [3] robot, the

 6

relative motion of the robot can be calculated from measured wheel speeds. Of course,

all measurements include noise and effects such as wheel slip are difficult to take into

account. Since this error is cumulative, the location estimate obtained using odometry

measurements alone quickly drifts from the real location and needs to be corrected

with measurements.

For most complex robotics problems, the pose of the robot cannot be directly

observed but instead needs to be inferred from various indirect sensor measurements.

Often a global map of the environment is provided that is used as the reference frame

for localization. Robot builds local maps of its surroundings and tries to match these to

the global map to figure out its location. The map must contain some features that the

robot can detect. For example, one might use special geometric beacons that are

reliably and uniquely detected by the sensors [1]. While such an approach utilizing

artificial beacons makes solving the problem easier, it requires modifying the

environment. Another similar approach is to use naturally occurring, but still easily

distinguishable landmarks, such as doors and corners of an office building [4]. This

technique is more flexible, but makes the localization problem harder as it might be

tricky to, for example, tell two similar doors or room corners apart. Such problems are

handled by algorithms that support multi-modal beliefs, i.e. the ability to track several

distinct hypotheses simultaneously, hoping to eventually converge and resolve the

ambiguities. Probabilistic methods for mobile robot localization have proven to work

well for complex, dynamically changing systems. They are robust in the face of sensor

limitations and model approximations and are often capable of real-time tracking

without being prohibitively computationally expensive.

The goal of this thesis is to explore and compare various techniques for real-

time autonomous robot localization using a camera as the main source of information,

and to develop a working positioning solution for a soccer-playing robot. The main

focus lies on two techniques: the Kalman filter and the particle filter. In the first part of

this thesis, general statistical background is introduced, employing the ideas of Bayes

filtering. Then the dynamics of the autonomous soccer-playing robot and its

environment are described and used as a practical example of robot localization.

Several different positioning algorithms are presented, implemented, tested and

compared in the simulator as well as on a physical robot.

 7

1 Bayesian filtering

 The theoretical treatment of the approaches and algorithms presented in this

section is generic for all localization problems. Later chapters will investigate in depth

the special case of a soccer-playing autonomous robot that uses its camera and

feedback from wheels, keeping track of landmarks on the field to try and guess its pose

on the field. The following statistics background and Bayes filter chapters are largely

based on Probabilistic robotics by S. Thrun, W. Burgard and D. Fox [5].

1.1 Statistics background

The following section is meant to provide the basic statistical ideas and

vocabulary to help in understanding the material that will follow.

In probabilistic robotics, quantities such as sensor measurements, control

inputs and the state of the robot are represented as random variables, which can take

multiple values according to specific probabilistic laws. We say there is a probability p

for a random variable X to take the value x and write it as p(X = x).

For example, consider a coin flip. There is an equal chance of getting either

heads or tails, Ð8 ÈÅÁÄÓÐ8 ÔÁÉÌÓ. Probabilities for all possible outcomes

must sum to one: ɫÐ8 Ø ρ.

Techniques described in this thesis deal with continuous random variables, in

which case, the probability for a random variable to take any particular value is actually

zero, hence it is customary to instead speak about probability density at a given value

and the corresponding probability density function (PDF). One of the most common

probability distributions is the one-dimensional Gaussian normal distribution with mean

ɛ and varianceů2 usually denoted as N(x; ɛ, ů2) and given by:

ÐØ ςʌʎ ÅØÐ (see Figure 1).

 8

Figure 1 . Gaussian normal distribution.

When working with multidimensional data, it makes sense to speak of random vectors.

The distribution of a continuous random vector is specified as a multidimensional

density function. Again, one of the most common distributions here is multivariate

normal distribution:

 px det2ɸǴ
1

2exp
1

2
x ȉ Ǵ x ȉ (1)

An example multivariate distribution is shown in Figure 2. A probability

density function must always integrate to one: Ð᷿ØÄØ 1.

Figure 2 . Example multivariate normal distribution visualization .

An important notion is the conditional (in)dependence of random variables. Let

(X, Y) be a two-dimensional random vector. Its components, X and Y are, of course,

themselves random variables. However, as they are related to each other, the

probability distribution of X may depend on whether we know something about Y or not.

In particular, if we know that Y = y, our knowledge of X is represented by a conditional

probability distribution given by:

 9

 p(x | y) = p(x, y) / p(y) (2)

If p(x | y) is the same for all y, we say that X and Y are independent random

variables. It is possible to show that this implies p(x, y) = p(x)p(y) [5].

1.1.1 Bayesô rule

By modifying Equation (2) slightly, we obtain Equation (3), known as the Bayesô

rule [6].

 px ȿ Ù
p ȿ x px

p
 (3)

The Bayes rule provides a mechanism for inferring the robotôs position (X) from

measurements (Y). The probability p(x) is the prior probability distribution, usually the

last state of the robot for our purpose, and y is the data, usually acquired from a sensor

measurement. The probability p(x | y) is called the posterior probability distribution over

X that is derived from the previous knowledge of X incorporating data y. The ñinverseò

conditional probability p(y | x) specifies the likelihood of observing data y given state x

and thus describes how state variables X cause sensor measurements Y.

The importance of properly taking into account prior beliefs is illustrated well in

the famous false positive paradox. Consider a case of testing for cancer [7]. Say we

know that 1% of the population has a specific cancer and there is a test that correctly

detects it 80% of the times and incorrectly results positive test result 10% of the times.

This means that 20% of the times, it does not detect cancer when the person really is

sick and 90% of the times correctly finds that a person does not have cancer. Bayes

rule provides a way for calculating the actual odds of having cancer when the test

comes back positive.

The chance of true positive is the chance that you really have cancer times the

odds that the test catches it which in our example calculates as 1% * 80% = 0.008.

Chance of false positive is similarly 99% * 10% = 0.099. The chance of an event is the

number of ways it could happen given all possible outcomes. Chances of getting a true

positive is 0.008 and chance of getting any positive result is the true positive plus the

false positive 0.008 + 0.099 = 0.107. Thus the chance of actually having cancer when

getting a positive test result is desired event probability divided by all possibilities which

 10

calculates to only 0.008 / 0.107 = 7.5%. Even though the accuracy of the test seems to

be 80%, the actual chance of having cancer given example statistics is quite low even

when getting positive test results.

1.1.2 Expectation and covariance

The expectation (also known as expected value, mean or first moment) of a

random variable X is calculated as the weighted average of all possible values the

random variable can take on. This is calculated for discrete and continues as given by

Equations (4), (5) respectively.

 EX Ǵ x px (4)

 EX x᷿ px dx (5)

 Expectation can be interpreted as the long-run average of many independent

repetitions of an experiment, such as dice-rolling. For example a standard fair dice with

face values 1-6, the expected value is 3.5 as that is the value one is likely to get when

averaging the face values for many rolls of the dice:

EX 1ẗ
1

6
2ẗ
1

6
3ẗ
1

6
4ẗ
1

6
5ẗ
1

6
6ẗ
1

6
3Ȣ5

 From above, we can define covariance as CovX EX
2

EX2, which

measures the squared expected deviation from the mean. A multivariate normal

distribution N(x; ɛ, ×) has a mean of ɛ and its covariance is defined using covariance

matrix В ὅέὺὼȟὼ which expresses the pairwise covariance of the variables in the

random vector.

1.2 Bayes filters

1.2.1 Intuitive explanation

 The following section uses an example from Probabilistic robotics [5]. Imagine a

robot in a one dimensional hallway with three indistinguishable doors. The robot can

move forwards or backwards and can sense with some certainty whether is currently

next to a door or not. Initially it does not know its location in the hallway but it knows

that it is heading in the positive direction and it also has a map of the hallway with door

 11

positions (the map). The goal of the robot is to find out where it is in the hallway using

its map, door sensor and movement commands. Since the robot motors are not perfect,

moving introduces some uncertainty into the system.

Figure 3. Example of probabilistic localization [5].

See Figure 3 for visualization of the example. To begin with in step a), the robot

does not know anything about its location so the initial belief is uniform across the

whole map of its environment represented by the first darker flat belief graph. The real

position of the robot is indicated in the image. It correctly detects that it is next to a door.

This observation is shown on the second (light gray) sense plot. Since the doors are

indistinguishable, detecting a door implies that with equal probability, the robot may be

 12

next to any of the three doors in the corridor. This sensory information is then fused into

the existing flat prior belief resulting in a distribution with three bumps indicating that the

robot knows it is most likely next to one of the doors but it is unsure which one.

Next in step b), the robot executes a command to move forwards, say, four

meters, which happens to be the same as the gap between the first two doors. The

same movement command is applied to the previous belief, shifting the distribution

forward by the same amount. Since the movement is expected not to be perfect - the

motors take some time to accelerate, wheels might be slipping etc., this operation

reduces the confidence of the previous belief and thus the ñhillsò become a bit flatter.

The robot now detects that it is again next to a door. Since it still doesnôt know which

door it is observing, the sense plot is the same as in the first step. But when we multiply

this sensory data with the prior distribution according to the Bayes rule, we can see that

one of the measurements coincides with one of the prior estimates. Combining the prior

and measurement distributions gives us one high peak, which correctly corresponds to

the real location of the robot.

Different algorithms discussed later will use slightly different dynamics and ways

to represent probability distributions, but the general idea of fusing information from

previous steps with measurement data and control inputs to incrementally improve

location estimate is the same for all of them and form the foundation of probabilistic

localization.

1.2.2 Controls and measurements

 The two main interactions between the robot and its environment are the robotôs

control actions and its measurements of the surroundings via the sensors. While these

are often performed simultaneously, it helps to treat them separately algorithmically.

 Through perception, the robot gets information about the state of its

surroundings which is often noisy and limited to a small region in the vicinity of the

robot. There are many ways of sensing the environment, ranging from a simple tactile

switches on the perimeter of the robot, triggering of which would indicate being close to

a wall, to range sensors, radar and laser systems, and computer vision. As sensors

usually have some delay required for acquiring and processing of information, they

provide information about the state of a few moments ago. The result of perception

(observation) is a measurement or, more often, a set of measurements. This

measurement data at time t is denoted as zt.

 13

 Control data carries information about the change in state of the robot in relation

to the environment and is denoted by ut at time t. For mobile robots, a typical example

would be setting the robot velocity in certain direction. For example, if we command the

robot to move forward at 2 meters per second then we expect it to change its pose by 6

meters in 3 seconds. The problem with this approach is that the powertrains of robots

are not perfect and are often subject to complex dynamics that is hard to model

accurately. For example, one cannot expect the robot to instantly accelerate to the

requested speed and keep it at exactly that.

For this reason data is often extracted from odometry, where the actual

rotational velocities of the wheels are measured using encoders and combining this

data and the robot dynamics model, one can calculate the relative pose changes at

each step. While this sort of input is actually sensory measurement data, it is often used

as control data in localization algorithms. This approach is also subject to noise and

unpredictable events, such as wheel slip, but it is usually more accurate and simpler to

implement than predicting state transitions relying only on control inputs. As the

odometry error is cumulative, it will eventually drift from real world state so some

measurement data is required to get the localizer back on track. The perception step

usually extracts new information about the environment and improves the robotôs

estimate of its whereabouts, whereas motion tends to lose precision due to the inherent

noise.

1.2.3 Markov assumption

 State xt is called complete if the knowledge of any other past states,

measurements and controls would not help us make any better predictions about the

future than would just knowing xt. Thus, state xt is a sufficient summary about

everything that has happened up to time t regarding the robot. This concept is called

the Markov assumption and, while it is generally not feasible in the real world, it is a

useful approximation to employ in order to make the algorithms computationally viable.

This way, only the last state and the current control and measurement information

needs to be considered for predicting future states.

 Assuming that the robot state is complete and exploiting the conditional

independence assumption (which states that certain variables are independent of

others knowing a third set of conditioning variables), we can denote the state transition

 14

probability p(xt | xt - 1, ut) which means that the probability distribution of the robot state

at time t depends on the state at last timestep xt-1 and the control input ut.

 The measurement probability p(zt | xt) defines which measurements zt are

generated from the state xt, meaning that measurements can be thought of as noisy

projections of the state.

Remember that we denoted the state of a robot as xt, the control data as ut and

measurements with zt at time t. Figure 4 visualizes the evolution of states driven by

control data and measurements.

Figure 4. Dynamic Bayesian network characterizing the evolution of state through

controls and measurements [5].

1.2.4 Belief, prediction and correction

 Belief is an important concept of probabilistic robotics which represents the

robotôs internal knowledge about the state of the environment. Often the pose of a robot

cannot be measured directly but rather needs to be inferred from the data that can be

observed such as the distance and angles to goals on a soccer field. A belief bel is a

conditional probability distribution that assigns a probability bel(xt) to each possible

hypothesis xt of the real state, conditioned on all past controls and measurements:

 belxt pxt ȿ z1ȡtȟu1ȡt (6)

Sometimes it is useful to calculate the posterior after incorporating current

command ut but before incorporating measurements from current time zt. This is called

a prediction as denoted by Equation (7). Calculating belxt from belxt is called

correction or the measurement update.

 15

 belxt pxt ȿ z1ȡt1ȟu1ȡt (7)

1.2.5 Bayes filter

 The Bayes filter update rule presented in Algorithm 1 is the most general

algorithm for calculating beliefs. As input, it takes the belief of the last step bel(xt - 1), the

control input ut and measurement data zt and returns the new belief bel(xt) at time t.

1. bayes_filter (bel(x t - 1), u t , z t):

2. for (every x t) {

3. belxt p᷿xt ȿ utȟxt1belxt1 dxt1

4. ÂÅÌØÔ ǶÐÚÔ ȿ ØÔÂÅÌØÔ

5. }

6. return bel(x t)

Algorithm 1. Bayes filter pseudo code implementation [5].

 The algorithm has two main steps. First, on line 3, it uses the control input ut to

transition the state probability distribution from xt-1 to xt. As this does not take

measurement into account yet, this is called the control update or prediction. The

transitioned probability distribution is then multiplied with the belief of last step and

integral sum of this product is found, resulting in prediction of the state based on last

state belief and control input.

 The second part on line 4 is called the measurement update where the

prediction calculated on the previous line is multiplied by the probability that the

measurement zt may have been observed given state xt. Requirement of a probability

distribution was that it has to integrate to one. To achieve that, the product at line 4

needs to be normalized with the normalization constant ʂ, which is chosen so that the

resulting distribution is normalized.

After processing each posterior state xt, the modified belief bel(x t) is returned.

To get started, the algorithm requires initial belief bel(x0) which is usually initiated as a

point mass centered around known value of x0, or as a uniform distribution over the

entire domain of x0 if the initial state is unknown. This generic Bayes filter

implementation can generally only be used for simple estimation problems as one

needs to either be able to perform the integration on line 3 and multiplication in line 4 in

closed form or be limited to finite state spaces so the integral in line 3 is a finite sum.

 16

Methods discussed later will use slightly different approach to get around these

limitations and are more computationally effective, but do so by losing generality and

rely on different assumptions regarding measurement and state transition probabilities,

initial belief and approximations used. Also the implementation complexity of various

algorithms varies. For example, the dynamics of state transition probability p(xt | ut, zt)

and measurement probability p(zt, xt) can be hard to accurately model. This is one of

the reasons why the particle filter approach described in section 1.4 has become

popular.

1.3 Kalman filter

1.3.1 Gaussian filters

 Gaussian filters are a popular family of recursive state estimators implementing

the Bayes filter for continuous spaces. The main idea of this group of filters is to

represent probability distributions using multivariate normal distributions given by the

following equation:

 px det2ɸǴ
1

2exp
1

2
x ȉ Ǵ x ȉ (8)

Using this approach enables characterizing the distribution using just two

parameters, the mean ʈand covariance matrix ɫ. The mean has the same

dimensionality n as the state x, while the covariance is a symmetric quadratic matrix of

size n Ĭ n.

While this representation is efficient to calculate, it has important limitations in

that the shape of the distribution can only be that of a normal distribution. Simple

Gaussian filter implementations are unimodal meaning they can represent a single

maximum. This is suitable for a wide range of localization tasks where usually the

starting position is known and the filter focuses around a single true state with relatively

small uncertainty but will not work that well in complex global localization problems

where it might be necessary to pursue several different hypotheses. The most basic

implementation also works well only for linear systems. Extensions to the basic

Gaussian filter combine several normal distributions to represent multimodal posteriors

and can handle nonlinear systems at the expense of increased implementation and

computational complexity.

 17

1.3.2 Introduction

 The Kalman filter (KF) is a popular Gaussian filter invented by Swerling (1958),

Kalman (1960) and Bucy (1962). It represents beliefs using the mean and covariance of

their Gaussian probability functions.

 In addition to Markov assumption (state contains everything to make the best

possible predictions), it must also hold that the state transition probability p(xt | ut, zt)

and measurement probability p(zt | xt) are both linear functions of their arguments with

added Gaussian noise where x is the state and u the control input, both of which are

vertical vectors:

 xt Atxt1 Btut Ůt (9)

 zt Ctxt1 ŭt (10)

The ʀ represents the Gaussian noise associated with uncertain state transition

and has the same size as the state vector. Systems that meet these assumptions are

called linear Gaussian systems.

In the equations above, At and Bt are matrices where At is a square matrix with

dimensions n Ĭ n, where n is the size of the state vector xt, Bt is of size n Ĭ m where m

is the size of control vector ut and Ct is of size k Ĭ n where k is the dimension of the

measurement vector zt. Mean of movement noise ʀ is zero and its covariance is

denoted Rt. Vector ɿ describes measurement noise with also a mean of zero and

covariance Qt. When the transition and measurement functions are defined this way

and the initial belief bel(x0) is normally distributed, it holds that the posterior bel(xt) is

also always a Gaussian [5].

1.3.3 Algorithm

1. kalman_filter (Ǽ t - 1, Ɇt - 1 ut , z t):

2. ʈÔ !ÔǼÔʦ "ÔÕÔ

3. ɫÔ !ÔǟÔʦ!Ô
4 2Ô

4. +Ô ɫ#Ô
4#Ôɫ#Ô

4 1Ô
ʦ

5. ʈ ʈ + Ú #ʈ

6. ɫÔ) +Ô#Ôɫ

7. return ʈ,ɫÔ

Algorithm 2. Kalman filter implementation [5].

 18

 The linear Kalman filter is given in Algorithm 2. Formally, the algorithm can be

derived by substituting the appropriate distributions into the generic Bayes filter

algorithm (Algorithm 1). We do not provide all the formal details (see [5] for in-depth

discussion) and instead give a brief intuitive explanation.

Being recursive, it requires the mean ɛt-1 and covariance Ɇt-1 of the last step as

input. In addition, it uses the current step command input ut and measurement data zt.

Lines 2, 3 calculate the predicted new mean and covariance based on just the control

input. Line 2 applies the state transition step to the previous mean along with the control

input resulting in belief belxt a step later but before incorporating measurement. On

line 3, the state transition function is also applied to the covariance from the last step

where At is multiplied into the covariance twice as covariance is a quadratic matrix.

These two lines represent the prediction step.

 Line 4 calculates matrix K, referred to as the Kalman gain which specifies how

reliable the measurement is thought to be and thus at which degree should it be

incorporated to the posterior result. A high gain mean that measurement data is

followed more precisely which makes the filter more responsive but also more subject

to noise in the measurement data. Low gain on the other hand relies more on the model

and random fluctuations in the sensor data affect it less at the expense of being less

responsive.

 Lines 5 and 6 calculates the new mean and covariance, deriving them from the

predicted mean, measurement data and Kalman gain. The predicted mean is adjusted

by the factor of how much the current measurement zt differs from expected

measurement #ʈ multiplied by the Kalman gain. This difference between the actual

and expected measurement is called innovation. Line 6 adjust the covariance with the

information gain received from measurement data. These lines represent the update

step of a Kalman filter.

 Kalman filter is computationally quite efficient. The performance of it is mainly

dictated by the inversion operation on line 4 and the multiplications on lines 3, 6. The

inversion has complexity of O(k2.4) where k is the dimension of the measurement vector

zt [8]. Often the measurement space is lower dimensional than the state space in which

case the multiplication complexity starts to dominate.

 19

1.3.4 Visualization

Figure 5 illustrates how the Kalman filter incrementally applies movement

commands and sensor measurement to produce a new estimation at each step for a

simple one dimensional problem such as the robot in the corridor example explained in

section 1.2.1.

We start with an initial prior belief shown in Figure 5.a (dark plot) and a

measurement received from the sensors in lighter distribution. These are combined in

Figure 5.b with a new mean around the center of the prior and sensed data but the

resulting Gaussian has less variance (is narrower and taller) which is the result of

information integration is Kalman filters. Figure 5.c visualizes the robot moving to the

right which results in the belief also shifting to the right and having larger variance

(wider and shorter) resulting of Kalman filter lines 2 and 3 and the fact that movement

action is associated with some noise and uncertainty. Figure 5.c shows another

measurement which largely coincides with the existing belief resulting in even more

confident posterior with rather small variance.

Figure 5. Illustration of Kalman filter [5]. Distributions are not to exact scale.

 20

1.3.5 Interactive example

 As part of this thesis, a web browser based implementation of Kalman filter was

developed using JavaScript and HTML5 technologies that can be used to experiment

with the filter and as a working reference implementation for others to incorporate into

their project starting with actual code rather than mathematical formulas.

 The first example shows the simplest use of a Kalman filter, guessing a one-

dimensional constant from a stream of noisy measurements as seen on Figure 6. A

practical use for this might be the voltage measurement in a digital multimeter. As can

be seen, even with large amount of sensor noise (green is the sensor data, red the

actual value and blue the Kalman filter value), the filter quickly converges on the right

value. The small graphs on the side show the various properties of the filter and the

user can play with input and filter parameters using the sliders below.

Figure 6. One dimensional Kalman filter guessing a constant value.

 The second example in Figure 7 shows a more complex case of guessing the

flight path of a cannonball. Imagine a projectile is shot out of a cannon and there is a

camera following its path that is not very accurate at determining the cannonballôs real

position at any time. But since the dynamics of a flying projectile are well known, this

can be modeled in the Kalman filter. This sort of task with concise model is well suited

 21

for the Kalman filter as it can follow the model to produce accurate results in spite of

lots of noise in the sensor input.

 As can be seen from the smaller Kalman gain plot on the right, initially it is quite

high. As more data comes in and the estimate stabilizes, the Kalman gain is reduced

and the filter starts to rely more on the model than the noisy sensor data. The

covariance is also reduced.

Figure 7. Kalman filter predicting the flight of a cannonball.

 This JavaScript implementation is an open source project on Github [16] with

live interactive examples that run directly in the browser. It is meant as both an example

for understanding Kalman filters as it allows to see the underlying dynamics and play

with input data as well as a working reference implementation that is easy to port into

any other language. The same implementation is used for the soccer robot simulation

experiments performed is Section 2.3.1.

1.3.6 Extensions

An alternative dual method of using canonical parameterization exists that uses

an information matrix and information vector with some trade-offs of computational

characteristics. Without going into details, when using the canonical parameterization to

 22

represent the posterior, the resulting implementation of the Bayes filter is called the

information filter [9].

The main limitation of the Kalman filter is that it is only applicable to linear

systems, but extensions to the general idea exist that can handle nonlinear problems.

The extended Kalman filter (EKF) approximates a potentially non-linear function

locally by calculating a tangent to the nonlinear function which is linear, making the

general case of the filter applicable. The tangent is calculated using Taylor expansion

which involves calculating the first derivative to the function in question, resulting in

Jacobian matrix, and evaluating it at a specific point. While the result of such operation

is an approximation, extended Kalman filters have become very popular for state

estimation in robotics due to their relative simplicity and computational efficiency,

having the same O(k2,4 + n2) complexity. EKF works best in situations of low uncertainty

and local nonlinearity, making it perform the best in local localization problems (cases

where the initial location is known and the algorithm needs to track the change of pose).

EKF retains the limitation of a single unimodal guess, another extension to Kalman filter

exists called multi-hypothesis extended Kalman filter (MHEKF) [10] which supports

multimodal beliefs.

Taylor expansion is not the only method for linearization the transformation of

Gaussians. The unscented Kalman filter (UKF) [11] probes the function to be linearized

at selected points and calculates a linearized approximation based on the outcomes of

these probes. It has the same asymptotic complexity and is shown to produce the same

or better results as EKF [5]. It also has the advantage that it does not require computing

the Jacobians, which can be difficult to determine for some problems. For this reason, it

is often referred to as a derivative-free filter.

1.4 Particle filter

1.4.1 Introduction

Particle filter (PF) is a non-parametric implementation of the Bayes filter that,

instead of representing probability distributions using parametric functions such as

Gaussians, uses a finite set of random state samples to represent the posterior belief

bel(xt).

Although this representation is approximate, it can represent a wide range of

probability distributions, which is not possible when using Gaussians or other

 23

parameterized models. Another advantage to particle filters is the ability to model

nonlinear systems without having to linearize the transformation function. Finally,

particle filter is often found to be the easiest to implement, especially for complex

systems where the Jacobians can be hard to find for EKF. For the reasons above,

particle filters have become popular in the robotics community and are used extensively

for both simple and more complex estimation tasks.

The random samples of a particle filter are called particles, each of which is a

concrete instance of the state, representing a separate hypothesis of the possible state

space. The set of particles is denoted by ʔ as given by:

 ʔȡ Ø ȟØ ȟȢȢȢȟØ (11)

 Usually the number of particles M needs to be relatively high to sufficiently

accurately represent the probability distribution. A thousand may be a good starting

point for simpler low-dimensionality problems but depending on the complexity, the

number of particles required for adequate probability distribution representation may

grow exponentially with state dimensionality. Also the number of particles may

sometimes depend on some properties of the belief such as algorithm run time t.

1.4.2 Intuitive explanation

 The basic idea of the algorithm is to first generate a set of particles, each

representing a possible state of the problem at hand, usually initiated at random. For

the example of a soccer-playing robot, the state of each particle would include its x, y

position on the field and orientation of the robot. If we do not know the position of the

robot in the beginning, we would just randomly initiate the position of the particles

uniformly over the playing field with arbitrary orientations. If we do know that the robot

starts at a particular corner, we can initiate the particles with a set position and

orientation, making it the simpler case of local localization problem.

 The next step is movement update. This can be done by using a model-based

approach where the robot is given a command to move in certain direction and this

command is modeled to result in certain movement. Often a more accurate and popular

solution is to use the odometry system mentioned earlier, where feedback from the

actuators (wheels for our example) is used to calculate the heading of the robot with

more accuracy. In either case, this movement information is then applied to all of the

particles so that they make the same maneuver as the robot is believed to have made.

 24

The filter accounts for uncertainty in robot movement by introducing some

artificial noise to this modelled motion so that each particle moves slightly differently

both in distance and in change or orientation. For example, let us examine a situation

where the cluster of particles representing the probability distribution has lagged behind

the robot as shown in Figure 8. If we were to apply the odometry movement to these

particles directly, they would likely not be able to catch up with the robot, but with noise,

some of the particles would move quicker than the odometry information suggested, get

closer to the robot and would more likely ñsurviveò (get resampled) in the following steps

(notice that in a real implementation, one would use several magnitudes larger number

of particles).

Figure 8. Particles are lagging behind the robot.

 After the movement phase comes the update step in which each particle is

evaluated based on its fitness to the measurement data. For example let us consider

Figure 9. After the movement step, the particles have spread out slightly due to having

different starting orientations and the applied movement noise. The camera takes a

measurement which could be as simple as distances to both goals. Robot observes the

blue goal at a distance of 1.6 meters and the yellow one at 3.4 meters. The algorithm

then computes the likelihood of each particle given the observations. We picked a

random particle and calculated that given its state, the blue goal should have been

observed 2.3 meters away and the yellow one at around 2.8 meters. As this expectation

 25

does not match the observed information very well and there are other particles which

would rank better, this particle will have a low probability of getting resampled for the

next step.

Figure 9. Update phase evaluation for a specific particle.

 The last step of the particle filter is to resample the particle set based on the

likelihood metric of each one. The better the particle state matched the observation, the

more likely it is to get picked into the new set and any one particle may be selected

several times. Since movement step of the following rounds will evolve each of them in

a slightly new direction, picking any of the particles multiple times is not an issue. In a

few iterations of the algorithm, the particles will have likely converged at the correct

location of the robot given adequately accurate model and sensor information as shown

in Figure 10.

 26

Figure 10. Particles have converged on the correct position of the robot.

 What remains is to extract the location of the robot from the set of particles.

Assuming a unimodal distribution (which is acceptable for simpler problems), one can

simply average the positions and orientations of the individual particles. This would

result in a single best guess. For more complex global localization problems, the

resulting distributions are often multimodal due to large initial uncertainty and

symmetries of the environment. Particle filters can represent such multimodal and

arbitrarily shaped beliefs well, but extracting concrete positions from it can require the

use of clustering algorithms such as k-means [19].

 27

1.4.3 Algorithm

1. particle_filter (ʔ , u t , z t):

2. ʔ ʔ ɡ

3. for (m = 1 to M) {

4. ÓÁÍÐÌÅ Ø ÆÒÏÍ ÐØ ȿ ÕȟØ

5. ʖÔ
Í
ÐÚÔ ȿ ØÔ

Í

6. …Ӷ …Ӷ ộØÔ
Í
ȟȊÔ
Í
Ớ

7. }

8. normalize ʖ

9. for (m = 1 to M) {

10. draw i with probability proportional to ʖÔ
É

11. ʔ ʔ ØÔ
É

12. }

13. return ʔ

Algorithm 3. Particle filter implementation [5].

 Basic implementation of the particle filter is given in Algorithm 3. As input, it

takes the particle set from previous step ʔ along with the latest control ut and

measurement info z t .

On line 2 it creates two empty sets to hold the new particles. Lines 3 to 7 iterate

over the set of particles and for each of them, line 4 generates the hypothetical state

Ø based on the particle state from previous step Ø and current control input ut.

Notice that one needs to be able to sample from the state transition distribution

p(xt | ut, xt-1). Line 5 calculates the importance factor or fitness of each particle Ø

denoted by ʖ which is the probability of observing measurement zt for particle Ø

given ʖÔ
Í
ÐÚÔ ȿ ØÔ

Í
. This is used to later incorporate measurement information to

the filter. This loop results in the particle filter representation of belxt.

The importance factors are normalized on line 8 so the largest probability would

equal 1. Lines 9 to 12 implement the importance factor based resampling of the

particles. The algorithm draws replacement M particles from the temporary set ʔ where

the probability of drawing each particle is given by the importance factor ʖ (the same

 28

particle can be drawn several times). This results in a new set of particles ʔ which are

distributed approximately according to the posterior ÂÅÌØ ʂÐÚ ȿ Ø ÂÅÌØ . The

resampling phase focuses the particles to regions in state space with high posterior

probability and convey the Darwinian idea of survival of the fittest. The results are

returned in line 13, containing the set of particles that are transformed by the control

input and best match the measurement data.

1.4.4 Density estimation

 Particle filter represents the posterior probability distribution using discrete

approximation but some applications require having an estimate at any point of the

state space, rather than just at the states represented by the finite number of particles.

Process of extracting continuous estimates from a set of particles is called density

estimation. Without going into much detail regarding various density estimation

techniques, this section names a few of them.

 A popular technique for unimodal problems is transforming the set of particles

into a Gaussian. Efficient approximation techniques exist that convert a set of particles

to a Gaussian normal distribution with mean and variance [5] (see Figure 11.b). While

this approach is effective for many simpler local localization problems, the Gaussians

capture only basic properties of a density. One could apply clustering algorithms such

as k-means to support multimodal hypothesis using a mixture of Gaussians.

 Alternative approach would be to use histograms as shown on Figure 11.c.

which support multi-modal distributions. Histograms are efficient to compute by

summing the weights of particles falling into a particular range and density at any state

can be extracted in time independent of the number of particles, but the state

complexity is exponential in the number of dimensions. This issue can be alleviated by

using density tree approach although this makes extracting the density at any point of

the state space more costly.

 Another method would be to use each particle as the center of a Gaussian

kernel and combining these mixtures of kernels to represent the overall density (see

Figure 11.c). This method is called kernel density estimation [21]. Advantage of such

approach is its algorithmic simplicity and smooth resulting density but the complexity of

computing density at any point is linear in the number of points.

 Choosing the method to use depends on the problem at hand and the available

computational resources. For autonomous robots, the processing power is often the

 29

limiting factor and a simple mean will suffice. More complex global and active

localization problems (changing robot behavior to improve localization performance by

for example keeping close to landmarks) might require using one of the more

computationally demanding but accurate approaches.

Figure 11. Example of density estimation approaches [5]. Plots are not to exact

scale.

1.4.5 Resampling

 Consider an extreme case of a rather useless robot without any sensors or

motors, incapable of learning anything about its environment or movement [5]. As such

a robot never moves or senses its surroundings, its state estimate should not change in

time.

 Unfortunately this is not the case for the simplistic implementation considered

above. With each iteration of the algorithm, the resampling step will slightly change the

statistics of the original probability density. With each step, more and more particles are

erased from the set simply due to the random nature of the resampling step without

creating any new particles which will eventually result in all of the particles being

 30

identical copies of one-another. It would seem that the robot has uniquely determined

its state which contradicts the fact that it has not sensors to improve on its estimate.

 A simple solution to this problem would be to never resample if the robot state is

known to be static (xt = xt-1). Even if the state changes, it can help reduce the variance

of the particle set as an estimator by reducing the frequency of resampling. There is a

balance where resampling too often can lead to loss of diversity and doing so too

seldom causes particles to be wasted in regions of low probability. Standard approach

for deciding whether to resample or not is to base it on the variance of the importance

weight which relates to the efficiency of the sample based representation [5]. If the

variance is zero (all weights are identical) then no resampling should be performed and

vice versa.

 An alternative strategy would be to use a low-variance sampling algorithm [12],

where instead of selecting samples independently of each other, the selection involves

a sequential stochastic process, cycling through all particles systematically. This

approach covers the space of samples in a more systematic fashion and if all particles

have the same importance factor, the resulting sample set is the same as input set so

that no samples get lost when resampling without accounting for movement and

observation data. Also the complexity or low variance sampling is linear to the number

of particles O(M) when independent samplers have complexity of O(M logM) [5].

 31

2 Localization of a soccer robot model

2.1 The Robotex soccer robot and its environment

 While the methods described in this thesis apply for various localization

problems, a specific case of a soccer-playing robot is researched in depth in an effort to

find the best way for an autonomous omnidirectional robot with two cameras to localize

itself. This section describes the robot, its environment and game rules for the practical

implementation.

 The environment and rules described in this section correspond to the Robotex

[12] 2012 professional robotic football league competition held in Estonia. The rules are

a simplified version of the popular international robotics competition Robocup small and

middle-size leagues held since 1997 promoting robotics and artificial intelligence (AI)

research.

2.1.1 The environment

Figure 12. Soccer field [17].

 32

 Figure 12 shows the layout of the playing field. The game is played one-on-one

with two competing robots starting in opposite corners. Eleven orange golf-balls are

placed on the field in random but symmetrical positions with respect to the center of the

field. The round is won by the robot that scores the most balls into the opponentôs goal

in 90 seconds. Balls fetched from outside the black border line do not count and robot

ramming the goal or leaving the green carpet gets removed from the field while the

other robot can keep playing until the match time runs out or all the balls are kicked off

the field.

 This setup has two obvious objects usable for localization, which all of the

robots generally have to be able to detect anyway ï the blue and yellow goals. As they

are quite large and uniquely colored, the goals are not hard to find with relatively simple

computer vision algorithms by looking for blobs of certain color range. Calculating an

angle to a detected object in the video frame is relatively easy as well, and, as cameras

are usually mounted at a fixed angle on the robot (see Figure 13), one can match the

pixel row of the object in the picture to an approximate real-world distance. This

approach is quite accurate near the robot but becomes inaccurate at larger distance as

for a camera quite close to the ground, the difference between an object at, let us say, 3

and 4 meters away might be only a few pixels.

 33

2.1.2 The robot

Figure 13. Soccer robot ñTelliskivi IIò.

 In general, the rules of Robotex do not specify the actual mechanical solution to

be used in the competition and every team designs their own. In this treatment we shall

focus on the robot "Telliskivi II" that was designed and built for Robotex 2012 by the

author of this thesis together with Reiko Randoja, Mark Laane and Taavi P»ri. The

robot successfully competed in it, achieving second place.

The robot has a diameter of approximately 250 mm and employs four

omnidirectional wheels, which allow it to move in an arbitrary direction while rotating

about its axis at the same time. Being able to move in any direction enables it to

maneuver efficiently and control its heading separately from its motion vector. The

wheels include rotary encoders, which allow gathering odometry data and calculate the

robotôs relative heading and rotational velocity.

 34

 The platform is equipped with two cameras positioned back-to-back. Each

camera provides about 60 degrees horizontal field of view. This arrangement has

several advantages over the common ñsingle front cameraò approach. Firstly, it allows

the robot to see more of the field at once, detecting balls and goals without having to

rotate about its axis as much. Secondly, the robot is capable of observing the two goals

simultaneously, which enables calculating the approximate location of the robot.

However, depending on the position and orientation of the robot, it may sometimes only

see a single goal or no goals at all. The localization algorithms must gracefully handle

such situations.

 The robot state having to do with localization consists of two main components ï

the position (x, y) on the plane of the field and its orientation denoted by ⱥ in the range

of 0..2ˊ. Together, these form the pose of the robot given by the vector (x, y, ⱥ)T. Other

potentially interesting state information in our model includes robot speed Vx, Vy and its

rotational velocity ɤ (called omega). These parameters comprise the control input

vector (Vx, Vy, ɤ)T generated by the algorithm guiding the robot. These inputs are

converted to individual wheel speeds and the motor hardware then does its best to

maintain those speeds relying on the feedback from the wheel encoders.

Thus, the main inputs to the localization algorithm are the distances and relative

angles to the two goals acquired by the camera, the odometer information extracted

from the wheel encoders and the command signals generated by the control algorithm.

2.2 Motion model and odometry

 As different robots utilize various means of navigating their environment, this

section will not go into much details trying to cover them all. A popular omnidirectional

movement model is implemented using omni-wheels shown in Figure 14. What makes

these wheels special is the fact that they only have considerable grip in the longitudinal

axis while the lateral grip is minimized by special rollers. This allows them to push

forward in the longitudinal direction while slipping freely at the same time in lateral

direction.

 35

Figure 14. Omni-wheel used for omni-directional movement.

 These wheels are arranged in a circular pattern on the perimeter of the robot as

shown in Figure 15 for 4-wheel configuration. Such configuration allows the robot to

move in any direction while simultaneously turning about its axis. This makes the robot

very maneuverable and allows controlling the direction of the robot separately from its

orientation, which is useful for minimizing the amount of turning the robot needs to

perform with the ball to aim for the goal (which often needs to be performed slowly not

to lose the ball).

Figure 15. Omni-wheels configuration.

