
UNIVERSITY OF TARTU

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Priit Kallas

Probabilistic Localization of a Soccer Robot

Master’s thesis (30 ECTS)

Supervisor: Konstantin Tretyakov, M.Sc.

Autor: …………………………. “…..” mai 2013

Juhendaja: …………………… “…..” mai 2013

Lubada kaitsmisele

Professor: .…………………… “…..” mai 2013

TARTU 2013

 2

 3

Contents

Introduction .. 5

1 Bayesian filtering .. 7

1.1 Statistics background ... 7

1.1.1 Bayes’ rule ... 9

1.1.2 Expectation and covariance ... 10

1.2 Bayes filters ... 10

1.2.1 Intuitive explanation ... 10

1.2.2 Controls and measurements .. 12

1.2.3 Markov assumption ... 13

1.2.4 Belief, prediction and correction ... 14

1.2.5 Bayes filter ... 15

1.3 Kalman filter .. 16

1.3.1 Gaussian filters .. 16

1.3.2 Introduction .. 17

1.3.3 Algorithm ... 17

1.3.4 Visualization .. 19

1.3.5 Interactive example ... 20

1.3.6 Extensions ... 21

1.4 Particle filter ... 22

1.4.1 Introduction .. 22

1.4.2 Intuitive explanation ... 23

1.4.3 Algorithm ... 27

1.4.4 Density estimation ... 28

1.4.5 Resampling ... 29

2 Localization of a soccer robot model .. 31

2.1 The Robotex soccer robot and its environment .. 31

2.1.1 The environment.. 31

2.1.2 The robot ... 33

2.2 Motion model and odometry .. 34

2.3 Robotex simulator .. 37

2.3.1 JavaScript implementation ... 37

2.3.2 Odometry localizer ... 41

 4

2.3.3 Direct measurement model ... 43

2.3.4 Intersection localizer ... 45

2.3.5 Kalman filter localizer .. 50

2.3.6 Particle filter localizer .. 57

3 Algorithm performance comparison ... 67

3.1 Simulator setup ... 67

3.2 Test methodology .. 69

3.3 Simulator parameters .. 69

3.4 Experiments .. 70

3.4.1 Odometer and intersection based localizer .. 70

3.4.2 Kalman filter localizer .. 72

3.4.3 Particle filter localizer .. 76

3.5 Performance comparison .. 82

4 Physical robot experiments ... 87

4.1 Implementation .. 87

4.2 Test setup ... 87

4.3 Tuning ... 89

4.4 Results .. 90

4.5 Future work ... 95

Summary .. 99

Resümee (eesti keeles) ... 101

References ... 103

 5

Introduction

Robot localization techniques attempt to solve the problem of estimating mobile

robot position and orientation (pose) relative to an external frame of reference.

Localizing the robot is a prerequisite step to smart decision making: before answering

“Where am I going” and “How I should get there”, one needs to first have at least an

estimation of “Where am I?” [1].

As robots are given ever more complicated tasks in natural and dynamically

changing environments, the control algorithms must cope with the inherent uncertainty

of such tasks. For example, the Google self-driving cars [20] must be able to navigate

various streets and motorways in changing weather, road conditions and lighting, with

other cars and pedestrians on the road that often behave unpredictably. It is impossible

to model and predict such complex systems precisely, so statistical algorithms have

been developed that explicitly account for the uncertainties and, instead of providing a

single “best guess”, define probability distributions over all the possible states. These

methods perform recursive state estimation, where data from previous states is taken

into account along with control inputs and sensory data. This information is fused

together in time so the robot can incrementally learn its location over several steps of

movement and measurements.

The uncertainty of such complex systems arises from the fact that all models of

the world are approximate. For example, one might express the kinematics of a car

using a simple “bicycle model” where the two rear wheels are fixed and the two front

wheels are turning and abide to Ackermann steering geometry [2], but this is only a

crude approximation of the complex interplay of forces involved in the suspension,

tires, etc. Statistical models explicitly acknowledge and take these model imperfections

into account. Movement actions generally increase the uncertainty of the system about

its location. Measurements, on the contrary, provide information and reduce

uncertainty. Another major source of uncertainty comes from the imperfections of the

various sensors used to get information about the environment. Most sensors have

limited resolution, range and are susceptible to noise that needs to be filtered out.

Popular sensors often used for localization purposes include ultrasonic sonars and

lasers for distance measurement, RFID and barcode readers, as well as cameras

employing computer vision algorithms. Additional useful information is often extracted

from odometer systems, where actual motion of the robot is calculated from its

actuators feedback. For example, given a two-wheeled differential drive [3] robot, the

 6

relative motion of the robot can be calculated from measured wheel speeds. Of course,

all measurements include noise and effects such as wheel slip are difficult to take into

account. Since this error is cumulative, the location estimate obtained using odometry

measurements alone quickly drifts from the real location and needs to be corrected

with measurements.

For most complex robotics problems, the pose of the robot cannot be directly

observed but instead needs to be inferred from various indirect sensor measurements.

Often a global map of the environment is provided that is used as the reference frame

for localization. Robot builds local maps of its surroundings and tries to match these to

the global map to figure out its location. The map must contain some features that the

robot can detect. For example, one might use special geometric beacons that are

reliably and uniquely detected by the sensors [1]. While such an approach utilizing

artificial beacons makes solving the problem easier, it requires modifying the

environment. Another similar approach is to use naturally occurring, but still easily

distinguishable landmarks, such as doors and corners of an office building [4]. This

technique is more flexible, but makes the localization problem harder as it might be

tricky to, for example, tell two similar doors or room corners apart. Such problems are

handled by algorithms that support multi-modal beliefs, i.e. the ability to track several

distinct hypotheses simultaneously, hoping to eventually converge and resolve the

ambiguities. Probabilistic methods for mobile robot localization have proven to work

well for complex, dynamically changing systems. They are robust in the face of sensor

limitations and model approximations and are often capable of real-time tracking

without being prohibitively computationally expensive.

The goal of this thesis is to explore and compare various techniques for real-

time autonomous robot localization using a camera as the main source of information,

and to develop a working positioning solution for a soccer-playing robot. The main

focus lies on two techniques: the Kalman filter and the particle filter. In the first part of

this thesis, general statistical background is introduced, employing the ideas of Bayes

filtering. Then the dynamics of the autonomous soccer-playing robot and its

environment are described and used as a practical example of robot localization.

Several different positioning algorithms are presented, implemented, tested and

compared in the simulator as well as on a physical robot.

 7

1 Bayesian filtering

 The theoretical treatment of the approaches and algorithms presented in this

section is generic for all localization problems. Later chapters will investigate in depth

the special case of a soccer-playing autonomous robot that uses its camera and

feedback from wheels, keeping track of landmarks on the field to try and guess its pose

on the field. The following statistics background and Bayes filter chapters are largely

based on Probabilistic robotics by S. Thrun, W. Burgard and D. Fox [5].

1.1 Statistics background

The following section is meant to provide the basic statistical ideas and

vocabulary to help in understanding the material that will follow.

In probabilistic robotics, quantities such as sensor measurements, control

inputs and the state of the robot are represented as random variables, which can take

multiple values according to specific probabilistic laws. We say there is a probability p

for a random variable X to take the value x and write it as p(X = x).

For example, consider a coin flip. There is an equal chance of getting either

heads or tails, p(X = heads) = p(X = tails) =
1

2
. Probabilities for all possible outcomes

must sum to one: Σp(X = x) = 1.

Techniques described in this thesis deal with continuous random variables, in

which case, the probability for a random variable to take any particular value is actually

zero, hence it is customary to instead speak about probability density at a given value

and the corresponding probability density function (PDF). One of the most common

probability distributions is the one-dimensional Gaussian normal distribution with mean

μ and variance σ2 usually denoted as N(x; μ, σ2) and given by:

p(x) = (2πσ2)−
1

2exp {−
1

2

(x−μ)2

σ2 } (see Figure 1).

 8

Figure 1. Gaussian normal distribution.

When working with multidimensional data, it makes sense to speak of random vectors.

The distribution of a continuous random vector is specified as a multidimensional

density function. Again, one of the most common distributions here is multivariate

normal distribution:

 p(x) = det(2πΣ)−
1

2exp {−
1

2
(x − μ)TΣ

−1(x − μ)} (1)

An example multivariate distribution is shown in Figure 2. A probability

density function must always integrate to one:∫ p(x)dx = 1.

Figure 2. Example multivariate normal distribution visualization.

An important notion is the conditional (in)dependence of random variables. Let

(X, Y) be a two-dimensional random vector. Its components, X and Y are, of course,

themselves random variables. However, as they are related to each other, the

probability distribution of X may depend on whether we know something about Y or not.

In particular, if we know that Y = y, our knowledge of X is represented by a conditional

probability distribution given by:

 9

 p(x | y) = p(x, y) / p(y) (2)

If p(x | y) is the same for all y, we say that X and Y are independent random

variables. It is possible to show that this implies p(x, y) = p(x)p(y) [5].

1.1.1 Bayes’ rule

By modifying Equation (2) slightly, we obtain Equation (3), known as the Bayes’

rule [6].

 p(x | y) =
p(y | x) p(x)

p(y)
 (3)

The Bayes rule provides a mechanism for inferring the robot’s position (X) from

measurements (Y). The probability p(x) is the prior probability distribution, usually the

last state of the robot for our purpose, and y is the data, usually acquired from a sensor

measurement. The probability p(x | y) is called the posterior probability distribution over

X that is derived from the previous knowledge of X incorporating data y. The “inverse”

conditional probability p(y | x) specifies the likelihood of observing data y given state x

and thus describes how state variables X cause sensor measurements Y.

The importance of properly taking into account prior beliefs is illustrated well in

the famous false positive paradox. Consider a case of testing for cancer [7]. Say we

know that 1% of the population has a specific cancer and there is a test that correctly

detects it 80% of the times and incorrectly results positive test result 10% of the times.

This means that 20% of the times, it does not detect cancer when the person really is

sick and 90% of the times correctly finds that a person does not have cancer. Bayes

rule provides a way for calculating the actual odds of having cancer when the test

comes back positive.

The chance of true positive is the chance that you really have cancer times the

odds that the test catches it which in our example calculates as 1% * 80% = 0.008.

Chance of false positive is similarly 99% * 10% = 0.099. The chance of an event is the

number of ways it could happen given all possible outcomes. Chances of getting a true

positive is 0.008 and chance of getting any positive result is the true positive plus the

false positive 0.008 + 0.099 = 0.107. Thus the chance of actually having cancer when

getting a positive test result is desired event probability divided by all possibilities which

 10

calculates to only 0.008 / 0.107 = 7.5%. Even though the accuracy of the test seems to

be 80%, the actual chance of having cancer given example statistics is quite low even

when getting positive test results.

1.1.2 Expectation and covariance

The expectation (also known as expected value, mean or first moment) of a

random variable X is calculated as the weighted average of all possible values the

random variable can take on. This is calculated for discrete and continues as given by

Equations (4), (5) respectively.

 E(X) = Σ x p(x) (4)

 E(X) = ∫x p(x) dx (5)

 Expectation can be interpreted as the long-run average of many independent

repetitions of an experiment, such as dice-rolling. For example a standard fair dice with

face values 1-6, the expected value is 3.5 as that is the value one is likely to get when

averaging the face values for many rolls of the dice:

E[X] = 1 ⋅
1

6
+ 2 ⋅

1

6
+ 3 ⋅

1

6
+ 4 ⋅

1

6
+ 5 ⋅

1

6
+ 6 ⋅

1

6
= 3.5

 From above, we can define covariance as Cov[X] = E[X2] − E[X]2 , which

measures the squared expected deviation from the mean. A multivariate normal

distribution N(x; μ, ∑) has a mean of μ and its covariance is defined using covariance

matrix ∑ = 𝐶𝑜𝑣[𝑥𝑖 , 𝑥𝑗]𝑖𝑗 which expresses the pairwise covariance of the variables in the

random vector.

1.2 Bayes filters

1.2.1 Intuitive explanation

 The following section uses an example from Probabilistic robotics [5]. Imagine a

robot in a one dimensional hallway with three indistinguishable doors. The robot can

move forwards or backwards and can sense with some certainty whether is currently

next to a door or not. Initially it does not know its location in the hallway but it knows

that it is heading in the positive direction and it also has a map of the hallway with door

 11

positions (the map). The goal of the robot is to find out where it is in the hallway using

its map, door sensor and movement commands. Since the robot motors are not perfect,

moving introduces some uncertainty into the system.

Figure 3. Example of probabilistic localization [5].

See Figure 3 for visualization of the example. To begin with in step a), the robot

does not know anything about its location so the initial belief is uniform across the

whole map of its environment represented by the first darker flat belief graph. The real

position of the robot is indicated in the image. It correctly detects that it is next to a door.

This observation is shown on the second (light gray) sense plot. Since the doors are

indistinguishable, detecting a door implies that with equal probability, the robot may be

 12

next to any of the three doors in the corridor. This sensory information is then fused into

the existing flat prior belief resulting in a distribution with three bumps indicating that the

robot knows it is most likely next to one of the doors but it is unsure which one.

Next in step b), the robot executes a command to move forwards, say, four

meters, which happens to be the same as the gap between the first two doors. The

same movement command is applied to the previous belief, shifting the distribution

forward by the same amount. Since the movement is expected not to be perfect - the

motors take some time to accelerate, wheels might be slipping etc., this operation

reduces the confidence of the previous belief and thus the “hills” become a bit flatter.

The robot now detects that it is again next to a door. Since it still doesn’t know which

door it is observing, the sense plot is the same as in the first step. But when we multiply

this sensory data with the prior distribution according to the Bayes rule, we can see that

one of the measurements coincides with one of the prior estimates. Combining the prior

and measurement distributions gives us one high peak, which correctly corresponds to

the real location of the robot.

Different algorithms discussed later will use slightly different dynamics and ways

to represent probability distributions, but the general idea of fusing information from

previous steps with measurement data and control inputs to incrementally improve

location estimate is the same for all of them and form the foundation of probabilistic

localization.

1.2.2 Controls and measurements

 The two main interactions between the robot and its environment are the robot’s

control actions and its measurements of the surroundings via the sensors. While these

are often performed simultaneously, it helps to treat them separately algorithmically.

 Through perception, the robot gets information about the state of its

surroundings which is often noisy and limited to a small region in the vicinity of the

robot. There are many ways of sensing the environment, ranging from a simple tactile

switches on the perimeter of the robot, triggering of which would indicate being close to

a wall, to range sensors, radar and laser systems, and computer vision. As sensors

usually have some delay required for acquiring and processing of information, they

provide information about the state of a few moments ago. The result of perception

(observation) is a measurement or, more often, a set of measurements. This

measurement data at time t is denoted as zt.

 13

 Control data carries information about the change in state of the robot in relation

to the environment and is denoted by ut at time t. For mobile robots, a typical example

would be setting the robot velocity in certain direction. For example, if we command the

robot to move forward at 2 meters per second then we expect it to change its pose by 6

meters in 3 seconds. The problem with this approach is that the powertrains of robots

are not perfect and are often subject to complex dynamics that is hard to model

accurately. For example, one cannot expect the robot to instantly accelerate to the

requested speed and keep it at exactly that.

For this reason data is often extracted from odometry, where the actual

rotational velocities of the wheels are measured using encoders and combining this

data and the robot dynamics model, one can calculate the relative pose changes at

each step. While this sort of input is actually sensory measurement data, it is often used

as control data in localization algorithms. This approach is also subject to noise and

unpredictable events, such as wheel slip, but it is usually more accurate and simpler to

implement than predicting state transitions relying only on control inputs. As the

odometry error is cumulative, it will eventually drift from real world state so some

measurement data is required to get the localizer back on track. The perception step

usually extracts new information about the environment and improves the robot’s

estimate of its whereabouts, whereas motion tends to lose precision due to the inherent

noise.

1.2.3 Markov assumption

 State xt is called complete if the knowledge of any other past states,

measurements and controls would not help us make any better predictions about the

future than would just knowing xt. Thus, state xt is a sufficient summary about

everything that has happened up to time t regarding the robot. This concept is called

the Markov assumption and, while it is generally not feasible in the real world, it is a

useful approximation to employ in order to make the algorithms computationally viable.

This way, only the last state and the current control and measurement information

needs to be considered for predicting future states.

 Assuming that the robot state is complete and exploiting the conditional

independence assumption (which states that certain variables are independent of

others knowing a third set of conditioning variables), we can denote the state transition

 14

probability p(xt | xt - 1, ut) which means that the probability distribution of the robot state

at time t depends on the state at last timestep xt-1 and the control input ut.

 The measurement probability p(zt | xt) defines which measurements zt are

generated from the state xt, meaning that measurements can be thought of as noisy

projections of the state.

Remember that we denoted the state of a robot as xt, the control data as ut and

measurements with zt at time t. Figure 4 visualizes the evolution of states driven by

control data and measurements.

Figure 4. Dynamic Bayesian network characterizing the evolution of state through

controls and measurements [5].

1.2.4 Belief, prediction and correction

 Belief is an important concept of probabilistic robotics which represents the

robot’s internal knowledge about the state of the environment. Often the pose of a robot

cannot be measured directly but rather needs to be inferred from the data that can be

observed such as the distance and angles to goals on a soccer field. A belief bel is a

conditional probability distribution that assigns a probability bel(xt) to each possible

hypothesis xt of the real state, conditioned on all past controls and measurements:

 bel(xt) = p(xt | z1:t,u1:t) (6)

Sometimes it is useful to calculate the posterior after incorporating current

command ut but before incorporating measurements from current time zt. This is called

a prediction as denoted by Equation (7). Calculating bel(xt) from bel(xt) is called

correction or the measurement update.

 15

 bel(xt) = p(xt | z1:t−1,u1:t) (7)

1.2.5 Bayes filter

 The Bayes filter update rule presented in Algorithm 1 is the most general

algorithm for calculating beliefs. As input, it takes the belief of the last step bel(xt - 1), the

control input ut and measurement data zt and returns the new belief bel(xt) at time t.

1. bayes_filter (bel(xt-1), ut, zt):

2. for (every xt) {

3. bel(xt) = ∫p(xt | ut,xt−1)bel(xt−1)dxt−1

4. bel(xt) = ηp(zt | xt)bel(xt)

5. }

6. return bel(xt)

Algorithm 1. Bayes filter pseudo code implementation [5].

 The algorithm has two main steps. First, on line 3, it uses the control input ut to

transition the state probability distribution from xt-1 to xt. As this does not take

measurement into account yet, this is called the control update or prediction. The

transitioned probability distribution is then multiplied with the belief of last step and

integral sum of this product is found, resulting in prediction of the state based on last

state belief and control input.

 The second part on line 4 is called the measurement update where the

prediction calculated on the previous line is multiplied by the probability that the

measurement zt may have been observed given state xt. Requirement of a probability

distribution was that it has to integrate to one. To achieve that, the product at line 4

needs to be normalized with the normalization constant η, which is chosen so that the

resulting distribution is normalized.

After processing each posterior state xt, the modified belief bel(xt) is returned.

To get started, the algorithm requires initial belief bel(x0) which is usually initiated as a

point mass centered around known value of x0, or as a uniform distribution over the

entire domain of x0 if the initial state is unknown. This generic Bayes filter

implementation can generally only be used for simple estimation problems as one

needs to either be able to perform the integration on line 3 and multiplication in line 4 in

closed form or be limited to finite state spaces so the integral in line 3 is a finite sum.

 16

Methods discussed later will use slightly different approach to get around these

limitations and are more computationally effective, but do so by losing generality and

rely on different assumptions regarding measurement and state transition probabilities,

initial belief and approximations used. Also the implementation complexity of various

algorithms varies. For example, the dynamics of state transition probability p(xt | ut, zt)

and measurement probability p(zt, xt) can be hard to accurately model. This is one of

the reasons why the particle filter approach described in section 1.4 has become

popular.

1.3 Kalman filter

1.3.1 Gaussian filters

 Gaussian filters are a popular family of recursive state estimators implementing

the Bayes filter for continuous spaces. The main idea of this group of filters is to

represent probability distributions using multivariate normal distributions given by the

following equation:

 p(x) = det(2πΣ)−
1

2exp {−
1

2
(x − μ)TΣ

−1(x − μ)} (8)

Using this approach enables characterizing the distribution using just two

parameters, the mean μ and covariance matrix Σ . The mean has the same

dimensionality n as the state x, while the covariance is a symmetric quadratic matrix of

size n × n.

While this representation is efficient to calculate, it has important limitations in

that the shape of the distribution can only be that of a normal distribution. Simple

Gaussian filter implementations are unimodal meaning they can represent a single

maximum. This is suitable for a wide range of localization tasks where usually the

starting position is known and the filter focuses around a single true state with relatively

small uncertainty but will not work that well in complex global localization problems

where it might be necessary to pursue several different hypotheses. The most basic

implementation also works well only for linear systems. Extensions to the basic

Gaussian filter combine several normal distributions to represent multimodal posteriors

and can handle nonlinear systems at the expense of increased implementation and

computational complexity.

 17

1.3.2 Introduction

 The Kalman filter (KF) is a popular Gaussian filter invented by Swerling (1958),

Kalman (1960) and Bucy (1962). It represents beliefs using the mean and covariance of

their Gaussian probability functions.

 In addition to Markov assumption (state contains everything to make the best

possible predictions), it must also hold that the state transition probability p(xt | ut, zt)

and measurement probability p(zt | xt) are both linear functions of their arguments with

added Gaussian noise where x is the state and u the control input, both of which are

vertical vectors:

 xt = Atxt−1 + Btut + εt (9)

 zt = Ctxt−1 + δt (10)

The ε represents the Gaussian noise associated with uncertain state transition

and has the same size as the state vector. Systems that meet these assumptions are

called linear Gaussian systems.

In the equations above, At and Bt are matrices where At is a square matrix with

dimensions n × n, where n is the size of the state vector xt, Bt is of size n × m where m

is the size of control vector ut and Ct is of size k × n where k is the dimension of the

measurement vector zt. Mean of movement noise εt is zero and its covariance is

denoted Rt. Vector δt describes measurement noise with also a mean of zero and

covariance Qt. When the transition and measurement functions are defined this way

and the initial belief bel(x0) is normally distributed, it holds that the posterior bel(xt) is

also always a Gaussian [5].

1.3.3 Algorithm

1. kalman_filter (μ t - 1, Σt - 1 ut, zt):

2. μ̅t = Atμt−1 + Btut

3. Σ̅t = AtΣt−1At
T + Rt

4. Kt = Σ̅tCt
T(CtΣ̅tCt

T + Qt)−1

5. μt = μ̅t + Kt(zt − Ctμ̅t)

6. Σt = (I − KtCt)Σ̅t

7. return μt,Σt

Algorithm 2. Kalman filter implementation [5].

 18

 The linear Kalman filter is given in Algorithm 2. Formally, the algorithm can be

derived by substituting the appropriate distributions into the generic Bayes filter

algorithm (Algorithm 1). We do not provide all the formal details (see [5] for in-depth

discussion) and instead give a brief intuitive explanation.

Being recursive, it requires the mean μt-1 and covariance Σt-1 of the last step as

input. In addition, it uses the current step command input ut and measurement data zt.

Lines 2, 3 calculate the predicted new mean and covariance based on just the control

input. Line 2 applies the state transition step to the previous mean along with the control

input resulting in belief bel(xt) a step later but before incorporating measurement. On

line 3, the state transition function is also applied to the covariance from the last step

where At is multiplied into the covariance twice as covariance is a quadratic matrix.

These two lines represent the prediction step.

 Line 4 calculates matrix K, referred to as the Kalman gain which specifies how

reliable the measurement is thought to be and thus at which degree should it be

incorporated to the posterior result. A high gain mean that measurement data is

followed more precisely which makes the filter more responsive but also more subject

to noise in the measurement data. Low gain on the other hand relies more on the model

and random fluctuations in the sensor data affect it less at the expense of being less

responsive.

 Lines 5 and 6 calculates the new mean and covariance, deriving them from the

predicted mean, measurement data and Kalman gain. The predicted mean is adjusted

by the factor of how much the current measurement zt differs from expected

measurement Ctμ̅t multiplied by the Kalman gain. This difference between the actual

and expected measurement is called innovation. Line 6 adjust the covariance with the

information gain received from measurement data. These lines represent the update

step of a Kalman filter.

 Kalman filter is computationally quite efficient. The performance of it is mainly

dictated by the inversion operation on line 4 and the multiplications on lines 3, 6. The

inversion has complexity of O(k2.4) where k is the dimension of the measurement vector

zt [8]. Often the measurement space is lower dimensional than the state space in which

case the multiplication complexity starts to dominate.

 19

1.3.4 Visualization

Figure 5 illustrates how the Kalman filter incrementally applies movement

commands and sensor measurement to produce a new estimation at each step for a

simple one dimensional problem such as the robot in the corridor example explained in

section 1.2.1.

We start with an initial prior belief shown in Figure 5.a (dark plot) and a

measurement received from the sensors in lighter distribution. These are combined in

Figure 5.b with a new mean around the center of the prior and sensed data but the

resulting Gaussian has less variance (is narrower and taller) which is the result of

information integration is Kalman filters. Figure 5.c visualizes the robot moving to the

right which results in the belief also shifting to the right and having larger variance

(wider and shorter) resulting of Kalman filter lines 2 and 3 and the fact that movement

action is associated with some noise and uncertainty. Figure 5.c shows another

measurement which largely coincides with the existing belief resulting in even more

confident posterior with rather small variance.

Figure 5. Illustration of Kalman filter [5]. Distributions are not to exact scale.

 20

1.3.5 Interactive example

 As part of this thesis, a web browser based implementation of Kalman filter was

developed using JavaScript and HTML5 technologies that can be used to experiment

with the filter and as a working reference implementation for others to incorporate into

their project starting with actual code rather than mathematical formulas.

 The first example shows the simplest use of a Kalman filter, guessing a one-

dimensional constant from a stream of noisy measurements as seen on Figure 6. A

practical use for this might be the voltage measurement in a digital multimeter. As can

be seen, even with large amount of sensor noise (green is the sensor data, red the

actual value and blue the Kalman filter value), the filter quickly converges on the right

value. The small graphs on the side show the various properties of the filter and the

user can play with input and filter parameters using the sliders below.

Figure 6. One dimensional Kalman filter guessing a constant value.

 The second example in Figure 7 shows a more complex case of guessing the

flight path of a cannonball. Imagine a projectile is shot out of a cannon and there is a

camera following its path that is not very accurate at determining the cannonball’s real

position at any time. But since the dynamics of a flying projectile are well known, this

can be modeled in the Kalman filter. This sort of task with concise model is well suited

 21

for the Kalman filter as it can follow the model to produce accurate results in spite of

lots of noise in the sensor input.

 As can be seen from the smaller Kalman gain plot on the right, initially it is quite

high. As more data comes in and the estimate stabilizes, the Kalman gain is reduced

and the filter starts to rely more on the model than the noisy sensor data. The

covariance is also reduced.

Figure 7. Kalman filter predicting the flight of a cannonball.

 This JavaScript implementation is an open source project on Github [16] with

live interactive examples that run directly in the browser. It is meant as both an example

for understanding Kalman filters as it allows to see the underlying dynamics and play

with input data as well as a working reference implementation that is easy to port into

any other language. The same implementation is used for the soccer robot simulation

experiments performed is Section 2.3.1.

1.3.6 Extensions

An alternative dual method of using canonical parameterization exists that uses

an information matrix and information vector with some trade-offs of computational

characteristics. Without going into details, when using the canonical parameterization to

 22

represent the posterior, the resulting implementation of the Bayes filter is called the

information filter [9].

The main limitation of the Kalman filter is that it is only applicable to linear

systems, but extensions to the general idea exist that can handle nonlinear problems.

The extended Kalman filter (EKF) approximates a potentially non-linear function

locally by calculating a tangent to the nonlinear function which is linear, making the

general case of the filter applicable. The tangent is calculated using Taylor expansion

which involves calculating the first derivative to the function in question, resulting in

Jacobian matrix, and evaluating it at a specific point. While the result of such operation

is an approximation, extended Kalman filters have become very popular for state

estimation in robotics due to their relative simplicity and computational efficiency,

having the same O(k2,4 + n2) complexity. EKF works best in situations of low uncertainty

and local nonlinearity, making it perform the best in local localization problems (cases

where the initial location is known and the algorithm needs to track the change of pose).

EKF retains the limitation of a single unimodal guess, another extension to Kalman filter

exists called multi-hypothesis extended Kalman filter (MHEKF) [10] which supports

multimodal beliefs.

Taylor expansion is not the only method for linearization the transformation of

Gaussians. The unscented Kalman filter (UKF) [11] probes the function to be linearized

at selected points and calculates a linearized approximation based on the outcomes of

these probes. It has the same asymptotic complexity and is shown to produce the same

or better results as EKF [5]. It also has the advantage that it does not require computing

the Jacobians, which can be difficult to determine for some problems. For this reason, it

is often referred to as a derivative-free filter.

1.4 Particle filter

1.4.1 Introduction

Particle filter (PF) is a non-parametric implementation of the Bayes filter that,

instead of representing probability distributions using parametric functions such as

Gaussians, uses a finite set of random state samples to represent the posterior belief

bel(xt).

Although this representation is approximate, it can represent a wide range of

probability distributions, which is not possible when using Gaussians or other

 23

parameterized models. Another advantage to particle filters is the ability to model

nonlinear systems without having to linearize the transformation function. Finally,

particle filter is often found to be the easiest to implement, especially for complex

systems where the Jacobians can be hard to find for EKF. For the reasons above,

particle filters have become popular in the robotics community and are used extensively

for both simple and more complex estimation tasks.

The random samples of a particle filter are called particles, each of which is a

concrete instance of the state, representing a separate hypothesis of the possible state

space. The set of particles is denoted by χt as given by:

 χt: = xt
[1]

, xt
[2]

, . . . , xt
[M]

 (11)

 Usually the number of particles M needs to be relatively high to sufficiently

accurately represent the probability distribution. A thousand may be a good starting

point for simpler low-dimensionality problems but depending on the complexity, the

number of particles required for adequate probability distribution representation may

grow exponentially with state dimensionality. Also the number of particles may

sometimes depend on some properties of the belief such as algorithm run time t.

1.4.2 Intuitive explanation

 The basic idea of the algorithm is to first generate a set of particles, each

representing a possible state of the problem at hand, usually initiated at random. For

the example of a soccer-playing robot, the state of each particle would include its x, y

position on the field and orientation of the robot. If we do not know the position of the

robot in the beginning, we would just randomly initiate the position of the particles

uniformly over the playing field with arbitrary orientations. If we do know that the robot

starts at a particular corner, we can initiate the particles with a set position and

orientation, making it the simpler case of local localization problem.

 The next step is movement update. This can be done by using a model-based

approach where the robot is given a command to move in certain direction and this

command is modeled to result in certain movement. Often a more accurate and popular

solution is to use the odometry system mentioned earlier, where feedback from the

actuators (wheels for our example) is used to calculate the heading of the robot with

more accuracy. In either case, this movement information is then applied to all of the

particles so that they make the same maneuver as the robot is believed to have made.

 24

The filter accounts for uncertainty in robot movement by introducing some

artificial noise to this modelled motion so that each particle moves slightly differently

both in distance and in change or orientation. For example, let us examine a situation

where the cluster of particles representing the probability distribution has lagged behind

the robot as shown in Figure 8. If we were to apply the odometry movement to these

particles directly, they would likely not be able to catch up with the robot, but with noise,

some of the particles would move quicker than the odometry information suggested, get

closer to the robot and would more likely “survive” (get resampled) in the following steps

(notice that in a real implementation, one would use several magnitudes larger number

of particles).

Figure 8. Particles are lagging behind the robot.

 After the movement phase comes the update step in which each particle is

evaluated based on its fitness to the measurement data. For example let us consider

Figure 9. After the movement step, the particles have spread out slightly due to having

different starting orientations and the applied movement noise. The camera takes a

measurement which could be as simple as distances to both goals. Robot observes the

blue goal at a distance of 1.6 meters and the yellow one at 3.4 meters. The algorithm

then computes the likelihood of each particle given the observations. We picked a

random particle and calculated that given its state, the blue goal should have been

observed 2.3 meters away and the yellow one at around 2.8 meters. As this expectation

 25

does not match the observed information very well and there are other particles which

would rank better, this particle will have a low probability of getting resampled for the

next step.

Figure 9. Update phase evaluation for a specific particle.

 The last step of the particle filter is to resample the particle set based on the

likelihood metric of each one. The better the particle state matched the observation, the

more likely it is to get picked into the new set and any one particle may be selected

several times. Since movement step of the following rounds will evolve each of them in

a slightly new direction, picking any of the particles multiple times is not an issue. In a

few iterations of the algorithm, the particles will have likely converged at the correct

location of the robot given adequately accurate model and sensor information as shown

in Figure 10.

 26

Figure 10. Particles have converged on the correct position of the robot.

 What remains is to extract the location of the robot from the set of particles.

Assuming a unimodal distribution (which is acceptable for simpler problems), one can

simply average the positions and orientations of the individual particles. This would

result in a single best guess. For more complex global localization problems, the

resulting distributions are often multimodal due to large initial uncertainty and

symmetries of the environment. Particle filters can represent such multimodal and

arbitrarily shaped beliefs well, but extracting concrete positions from it can require the

use of clustering algorithms such as k-means [19].

 27

1.4.3 Algorithm

1. particle_filter (χt−1, ut, zt):

2. χt = χt = Θ

3. for (m = 1 to M) {

4. sample xt
[m]

 from p(xt | ut, x𝑡−1
[m]

)

5. ωt
[m]

= p(zt | xt
[m]

)

6. �̅�𝑡 = �̅�𝑡 + 〈xt
[m]

,ωt
[m]

〉

7. }

8. normalize ωt
[m]

9. for (m = 1 to M) {

10. draw i with probability proportional to ωt
[i]

11. χt = χt + xt
[i]

12. }

13. return χt

Algorithm 3. Particle filter implementation [5].

 Basic implementation of the particle filter is given in Algorithm 3. As input, it

takes the particle set from previous step χt−1 along with the latest control ut and

measurement info zt.

On line 2 it creates two empty sets to hold the new particles. Lines 3 to 7 iterate

over the set of particles and for each of them, line 4 generates the hypothetical state

xt
[m]

based on the particle state from previous step xt−1
[m]

 and current control input ut.

Notice that one needs to be able to sample from the state transition distribution

p(xt | ut, xt-1). Line 5 calculates the importance factor or fitness of each particle xt
[m]

denoted by ωt
[m]

 which is the probability of observing measurement zt for particle xt
[m]

given ωt
[m]

= p(zt | xt
[m]

). This is used to later incorporate measurement information to

the filter. This loop results in the particle filter representation of bel(xt).

The importance factors are normalized on line 8 so the largest probability would

equal 1. Lines 9 to 12 implement the importance factor based resampling of the

particles. The algorithm draws replacement M particles from the temporary set χt where

the probability of drawing each particle is given by the importance factor ωt
[m]

 (the same

 28

particle can be drawn several times). This results in a new set of particles χt which are

distributed approximately according to the posterior bel(xt) = ηp(zt | xt
[m]

)bel(xt). The

resampling phase focuses the particles to regions in state space with high posterior

probability and convey the Darwinian idea of survival of the fittest. The results are

returned in line 13, containing the set of particles that are transformed by the control

input and best match the measurement data.

1.4.4 Density estimation

 Particle filter represents the posterior probability distribution using discrete

approximation but some applications require having an estimate at any point of the

state space, rather than just at the states represented by the finite number of particles.

Process of extracting continuous estimates from a set of particles is called density

estimation. Without going into much detail regarding various density estimation

techniques, this section names a few of them.

 A popular technique for unimodal problems is transforming the set of particles

into a Gaussian. Efficient approximation techniques exist that convert a set of particles

to a Gaussian normal distribution with mean and variance [5] (see Figure 11.b). While

this approach is effective for many simpler local localization problems, the Gaussians

capture only basic properties of a density. One could apply clustering algorithms such

as k-means to support multimodal hypothesis using a mixture of Gaussians.

 Alternative approach would be to use histograms as shown on Figure 11.c.

which support multi-modal distributions. Histograms are efficient to compute by

summing the weights of particles falling into a particular range and density at any state

can be extracted in time independent of the number of particles, but the state

complexity is exponential in the number of dimensions. This issue can be alleviated by

using density tree approach although this makes extracting the density at any point of

the state space more costly.

 Another method would be to use each particle as the center of a Gaussian

kernel and combining these mixtures of kernels to represent the overall density (see

Figure 11.c). This method is called kernel density estimation [21]. Advantage of such

approach is its algorithmic simplicity and smooth resulting density but the complexity of

computing density at any point is linear in the number of points.

 Choosing the method to use depends on the problem at hand and the available

computational resources. For autonomous robots, the processing power is often the

 29

limiting factor and a simple mean will suffice. More complex global and active

localization problems (changing robot behavior to improve localization performance by

for example keeping close to landmarks) might require using one of the more

computationally demanding but accurate approaches.

Figure 11. Example of density estimation approaches [5]. Plots are not to exact

scale.

1.4.5 Resampling

 Consider an extreme case of a rather useless robot without any sensors or

motors, incapable of learning anything about its environment or movement [5]. As such

a robot never moves or senses its surroundings, its state estimate should not change in

time.

 Unfortunately this is not the case for the simplistic implementation considered

above. With each iteration of the algorithm, the resampling step will slightly change the

statistics of the original probability density. With each step, more and more particles are

erased from the set simply due to the random nature of the resampling step without

creating any new particles which will eventually result in all of the particles being

 30

identical copies of one-another. It would seem that the robot has uniquely determined

its state which contradicts the fact that it has not sensors to improve on its estimate.

 A simple solution to this problem would be to never resample if the robot state is

known to be static (xt = xt-1). Even if the state changes, it can help reduce the variance

of the particle set as an estimator by reducing the frequency of resampling. There is a

balance where resampling too often can lead to loss of diversity and doing so too

seldom causes particles to be wasted in regions of low probability. Standard approach

for deciding whether to resample or not is to base it on the variance of the importance

weight which relates to the efficiency of the sample based representation [5]. If the

variance is zero (all weights are identical) then no resampling should be performed and

vice versa.

 An alternative strategy would be to use a low-variance sampling algorithm [12],

where instead of selecting samples independently of each other, the selection involves

a sequential stochastic process, cycling through all particles systematically. This

approach covers the space of samples in a more systematic fashion and if all particles

have the same importance factor, the resulting sample set is the same as input set so

that no samples get lost when resampling without accounting for movement and

observation data. Also the complexity or low variance sampling is linear to the number

of particles O(M) when independent samplers have complexity of O(M logM) [5].

 31

2 Localization of a soccer robot model

2.1 The Robotex soccer robot and its environment

 While the methods described in this thesis apply for various localization

problems, a specific case of a soccer-playing robot is researched in depth in an effort to

find the best way for an autonomous omnidirectional robot with two cameras to localize

itself. This section describes the robot, its environment and game rules for the practical

implementation.

 The environment and rules described in this section correspond to the Robotex

[12] 2012 professional robotic football league competition held in Estonia. The rules are

a simplified version of the popular international robotics competition Robocup small and

middle-size leagues held since 1997 promoting robotics and artificial intelligence (AI)

research.

2.1.1 The environment

Figure 12. Soccer field [17].

 32

 Figure 12 shows the layout of the playing field. The game is played one-on-one

with two competing robots starting in opposite corners. Eleven orange golf-balls are

placed on the field in random but symmetrical positions with respect to the center of the

field. The round is won by the robot that scores the most balls into the opponent’s goal

in 90 seconds. Balls fetched from outside the black border line do not count and robot

ramming the goal or leaving the green carpet gets removed from the field while the

other robot can keep playing until the match time runs out or all the balls are kicked off

the field.

 This setup has two obvious objects usable for localization, which all of the

robots generally have to be able to detect anyway – the blue and yellow goals. As they

are quite large and uniquely colored, the goals are not hard to find with relatively simple

computer vision algorithms by looking for blobs of certain color range. Calculating an

angle to a detected object in the video frame is relatively easy as well, and, as cameras

are usually mounted at a fixed angle on the robot (see Figure 13), one can match the

pixel row of the object in the picture to an approximate real-world distance. This

approach is quite accurate near the robot but becomes inaccurate at larger distance as

for a camera quite close to the ground, the difference between an object at, let us say, 3

and 4 meters away might be only a few pixels.

 33

2.1.2 The robot

Figure 13. Soccer robot “Telliskivi II”.

 In general, the rules of Robotex do not specify the actual mechanical solution to

be used in the competition and every team designs their own. In this treatment we shall

focus on the robot "Telliskivi II" that was designed and built for Robotex 2012 by the

author of this thesis together with Reiko Randoja, Mark Laane and Taavi Põri. The

robot successfully competed in it, achieving second place.

The robot has a diameter of approximately 250 mm and employs four

omnidirectional wheels, which allow it to move in an arbitrary direction while rotating

about its axis at the same time. Being able to move in any direction enables it to

maneuver efficiently and control its heading separately from its motion vector. The

wheels include rotary encoders, which allow gathering odometry data and calculate the

robot’s relative heading and rotational velocity.

 34

 The platform is equipped with two cameras positioned back-to-back. Each

camera provides about 60 degrees horizontal field of view. This arrangement has

several advantages over the common “single front camera” approach. Firstly, it allows

the robot to see more of the field at once, detecting balls and goals without having to

rotate about its axis as much. Secondly, the robot is capable of observing the two goals

simultaneously, which enables calculating the approximate location of the robot.

However, depending on the position and orientation of the robot, it may sometimes only

see a single goal or no goals at all. The localization algorithms must gracefully handle

such situations.

 The robot state having to do with localization consists of two main components –

the position (x, y) on the plane of the field and its orientation denoted by ϴ in the range

of 0..2π. Together, these form the pose of the robot given by the vector (x, y, ϴ)T. Other

potentially interesting state information in our model includes robot speed Vx, Vy and its

rotational velocity ω (called omega). These parameters comprise the control input

vector (Vx, Vy, ω)T generated by the algorithm guiding the robot. These inputs are

converted to individual wheel speeds and the motor hardware then does its best to

maintain those speeds relying on the feedback from the wheel encoders.

Thus, the main inputs to the localization algorithm are the distances and relative

angles to the two goals acquired by the camera, the odometer information extracted

from the wheel encoders and the command signals generated by the control algorithm.

2.2 Motion model and odometry

 As different robots utilize various means of navigating their environment, this

section will not go into much details trying to cover them all. A popular omnidirectional

movement model is implemented using omni-wheels shown in Figure 14. What makes

these wheels special is the fact that they only have considerable grip in the longitudinal

axis while the lateral grip is minimized by special rollers. This allows them to push

forward in the longitudinal direction while slipping freely at the same time in lateral

direction.

 35

Figure 14. Omni-wheel used for omni-directional movement.

 These wheels are arranged in a circular pattern on the perimeter of the robot as

shown in Figure 15 for 4-wheel configuration. Such configuration allows the robot to

move in any direction while simultaneously turning about its axis. This makes the robot

very maneuverable and allows controlling the direction of the robot separately from its

orientation, which is useful for minimizing the amount of turning the robot needs to

perform with the ball to aim for the goal (which often needs to be performed slowly not

to lose the ball).

Figure 15. Omni-wheels configuration.

 36

 Depending on the individual wheel speeds, the robot can move in any direction

and rotate simultaneously. Figure 16.a shows the robot moving forwards without any

rotational speed and 16.b shows the robot rotating about its center. To move diagonally

for example, two opposing wheels would be run at the same speed while the two other

ones would stand still.

Figure 16. Omnidirectional movement.

 For our example, we are using a four-wheel setup with the wheels labelled as

shown on Figure 17. The numbering is generally a matter of choice but it defines the

“forward” direction of the robot.

 37

Figure 17. Wheel numbers and angles.

Since the velocities of three wheels are enough to define the motion model of

the robot, we deduce it from four wheels by generating four sets of three wheels,

calculating each set separately and averaging the results to produce the final motion

vector and rotational velocity ω.

2.3 Robotex simulator

 This section provides practical implementations of the discussed algorithms. A

full-featured simulator [13] was created as a part of this thesis that enables testing the

various localization and control algorithms. It is implemented using HTML5

technologies, written in JavaScript and rendered using SVG. The simulator is open-

source and accessible from Github. All of the code discussed in future sections is

referenced from this simulator literately licensed to be used in any way.

2.3.1 JavaScript implementation

 This thesis provides an example implementation for the main algorithms

discussed, written in JavaScript within the simulator framework. JavaScript was chosen

because it is widely known, runs in the browser without any additional dependencies,

does not require compiling and can be understood by people with various programming

 38

language backgrounds. The whole codebase is available in the open-source simulation

platform [13]. The code below will reference to specific files in the simulator source for

complete code, the main source tree layout is presented in Figure 18.

Figure 18. Simulator source tree layout.

The robot model setup step is given in Code Listing 1. As input, it requires the

wheel radius, an array of wheel angles and the wheel offset from robot’s center in

meters. The first omega matrix defined in line 6 is used to calculate the wheel speeds

from input target heading and omega in the following step. The other matrices are the

four combinations of three wheels that will later be used to calculate the relative

 39

movement of the robot based on wheel speeds as input. Inverse of these matrices are

also pre-calculated.

Code Listing 1. Four-wheel omnidirectional motion model setup.

 The motion model defines two main operations. Firstly, it needs to calculate the

individual wheel speeds required for the robot to move at a certain direction and change

orientation with given speed. This calculation is given in Code Listing 2. As input, it

takes the target heading and rotational velocity and as output, the four wheel speeds

are returned. The target direction has components x and y which combined with target

omega are used to build the target 3x1 matrix on line 40. The wheel omegas are then

calculated by scaling the omega matrix by the inverse of wheel radius and then

multiplying the result with target matrix. This results in a 4x1 matrix containing the

 40

individual wheel speeds. The operation could be optimized slightly by including the

wheel radius inverse multiplication in the original omegaMatrix.

Code Listing 2. Wheel omega calculation from target heading and rotational velocity.

 The second operation involves calculating the relative robot velocity and omega

from wheel speeds as given by Code Listing 3. Four combinations of three wheel

speeds are calculated matching the setup step. The inverse of the omega matrices

created in setup step are then scaled by wheel radius and multiplied by the wheel

omega matrices, resulting in four different hypotheses. These are then averaged to

produce the final x, y velocities and omega. Since the data from all wheels are

averaged, should any of them slip slightly, it will have less effect on the calculated

movement vector then that would be the case for three wheels. An alternative could be

eliminating the outlier (set of wheels that is most different from the average). Data

extracted from this last step is the odometry information that is used in the localization

algorithms following in later sections.

 41

Code Listing 3. Calculating robot movement from wheel omegas – the odometer.

2.3.2 Odometry localizer

 Using the odometry information directly, we can implement the simplest

localization system that uses no additional feedback. This has little practical value as

the odometry-only approach will eventually drift away from the true state. Imagine that

the orientation of the robot has drifted just a few degrees, when the robot now moves a

larger distance, this will accumulate a relatively large error as shown on Figure 19.

 42

Figure 19. Odometry drift from small orientation difference.

 The OdometerLocalizer is implemented in library/sim/OdometerLocalizer.js and

given by Code Listing 4. While this localization algorithm is not very useful in this form

for the reason described above, it sets a template for the other algorithms. In the

constructor, the initial state is set up. As the position and orientation of the robot is

known at the start of the round based on which side its set to play against and that the

robot is always oriented the same way (let us say at a 45 degree angle), the localizer

should be initiated to this known pose.

 The main method of the localizer is the move command. This is called at every

iteration with the robot’s local x, y and rotational velocities. The dt is short for delta-time

and this is the time in seconds that has passed since the last iteration, used for

calculating the actual velocities. Line 8 calculates the new orientation by adding

rotational velocity omega * dt to the previous value and also limits it between 0 and 360

degrees (or 2π in radians).

 The updated orientation is then used in lines 10 to 13 to update the actual

position. The local x, y velocities are transformed to global coordinate system space by

rotating the vector by robot orientation. The getPosition method simply returns the pose

of the robot as predicted by this localization algorithm.

 43

Code Listing 4. Odometry-only localizer implementation.

2.3.3 Direct measurement model

 Having two cameras back to back enables the robot to calculate its approximate

position directly given that it sees both of goals at the same time as shown on

Figure 20. As the positions of the goals are fixed, observing the distances d1 and d2 to

both goals, we can see that the robot must be located in one of the intersection points

P1 or P2 of two circles drawn from the center of the goals with a radius matching the

distance of the goals respectively.

 Even if the robot only sees a single goal, it can still use it to improve its position

estimate as shown in Figure 21. Imagine the robot’s last position estimate was 1) and it

now observes the yellow goal at distance d1. It can now improve its location estimate

by switching to position 2) as the robot needs to be somewhere on the circle drawn

from the center of the goal with diameter d1. This functionality is implemented in Code

Listing 5.

 44

Figure 20. Calculating robot position from observing distance to both goals.

Figure 21. Improving position estimate from observing a single goal.

 45

Code Listing 5. Position adjustment from observing a single goal.

2.3.4 Intersection localizer

 The second simplistic localization algorithm based directly on the observation of

goal distances and angles is implemented in library/sim/IntersectionLocalizer.js of the

simulator. The basic idea of this method is to find the intersection points of two circles

drawn from the center of the goals with a radius of observed distances to them

respectively. Given that the two goals are currently visible and distance measurement is

sufficiently accurate for them to overlap, this gives us coordinates to two points P1, P2

on the field as was demonstrated in Figure 20.

One now needs to decide in which of these the robot resides in. This can be

done by comparing the last position of the robot to the new measurements and picking

the one closest to previous. While this generally works, it can fail when the robot is near

the horizontal centerline of the field as the intersections move very close together. The

correct intersection can be uniquely detected if the observed angles to the two goals

have the same sign meaning that both of the goals are either to the right or to the left of

the robot. This is visualized in Figure 22.1. If on the other hand one of the goals is to the

left of the robot and the other to the right from its centerline, the correct intersection

point cannot be detected from just the distances and signs of angles to the goals as the

same situation can occur for both intersection points as visualized in Figure 22.2. We

 46

can see that the robot on both sides of the centerline observe the blue goal to be on its

right (positive angle) and the yellow one on the left (negative angle). In such situations,

the simulated intersection localizer algorithm picks the point closest to last position

which can in some cases fail near the centerline as discussed above. This functionality

is implemented in Code Listing 6.

In a physical robot implementation using a camera image for perception, one

could extract the y-coordinates of the top or lower edges of the observed goals and

from these extract whether the goal is viewed from the left or right. For example

consider Figure 23 where the robot sees the blue goal with left top corner higher than

the right implying that it is looking at it from the left. Extracting this information from the

camera image is not trivial and this would again not work well around the centerline of

the field where the goal would appear not skewed in the image.

 47

Figure 22. Detecting correct intersection point from observed goal angles.

 48

Figure 23. Deciding intersection field side from camera image.

 49

Code Listing 6. Deciding which circle intersection to use.

 The last step is calculating the robot orientation from the observed goal

distances and angles which is given in Code Listing 7. Seeing both goals gives us two

guesses and an average of them is used as the final orientation guess. Care must be

taken when averaging angles taking the rollover over zero into account.

 50

Code Listing 7. Extracting orientation.

2.3.5 Kalman filter localizer

 The main issue with the intersection localizer explained in the previous section

is that it is highly susceptible to the noise in the distance measurement sensor data

making the guessed location of the robot jump around considerably. Any control

algorithms depending on such variable location estimate would have problems

maintaining stable state. We can alleviate this problem by passing the data through the

Kalman filter which allows us to choose a balance between the odometer and visual

sensory data. Relying more on the odometer makes the filter more stable but less

responsive while the opposite makes it behave more like the intersection localizer

alone. Kalman filtering can give us better results than simple odometer or intersection

localizer because it fuses localization information from two independent sources.

 The linear Kalman filter is implemented in library/kalman/LinearKalmanFilter.js

of the simulator. The main prediction and observation procedures are given in Code

Listing 8 which corresponds to the mathematical definition given in Section 1.3.3.

 51

Code Listing 8. Kalman filter algorithm implementation.

The Kalman localizer is implemented in lib/sim/KalmanFilterLocalizer.js. First we

need to decide which data to use and define the various matrices of the filter that

control how it reacts to this input data. The first part of this initialization is given in Code

Listing 9. The localization algorithm models the pose (x, y coordinates and orientation)

of the robot along with its global velocity. This means that we need to use 5x5 matrices

for our Kalman filter setup.

The state transition matrix defines the following rules that correspond to lines

29-33:

 52

 x(n+1) = x(n) + Vx(n)

 y(n+1) = y(n) + Vy(n)

 Vx(n+1) = velocityPreserve * Vx(n)

 Vy(n+1) = velocityPreserve * Vy(n)

 O(n+1) = O(n)

 The velocityPreserve is a parameter in range 0..1 which defines how much of

the existing velocity information is trusted and in which amount will it be replaced by the

input odometry data. The orientation is conserved by state transition. The control matrix

defines how the control input vector is integrated into the estimate. Here we extract a

portion of the control velocities and rotational velocity. The observation matrix is an

identity matrix as we can observe all the parameters directly. The initial state estimate is

initiated to known robot start pose.

 53

Code Listing 9. Kalman filter configuration.

The second part of the initialization is given by Code Listing 10. Here the initial

covariance is defined along with the process and measurement error estimates. These

are currently defined as constant values for all parameters but could be individually

tuned for optimal results. Finally, an instance of the Kalman filter algorithm is created

with all of the configuration parameters.

 54

Code Listing 10. Kalman filter initialization.

The main update method of it is given by Code Listing 11. As input, it requires

the calculated pose of the robot from the intersection localizer, the commanded and

sensed velocities and current timestep.

The first part of the update routine on lines 130 to 143 deal with the fact that

orientation is sensed in the range from zero to 360°, which creates problems for the

algorithm at the wrapping point around 0°. Imagine that the current orientation estimate

is 350° and the next step, orientation of 10° is calculated. Even though the actual angle

difference is only 20 degrees, the Kalman filter will start to incorporate this

measurement by gradually reducing the orientation estimate, resulting in the estimate

failing at each rotation of the robot. To deal with this issue, the rollovers are detected

 55

and the algorithm keeps track of the number of rotations the robot has performed,

adding these to the calculated orientation. This ensures that the orientation remains

continuous at all times.

Lines 147 to 168 calculate the control and measurement vectors used as inputs

to the Kalman filter. This step requires calculating the global command and odometer

velocities using trigonometry from currently estimated orientation. The control vector

includes the commanded velocities and omega while the measurement vector includes

information from the odometer and calculated noisy pose. Lines 171 to 177 update the

filter using the input data calculated above and extract the estimated pose.

 56

Code Listing 11. Kalman filter localizer main update step.

 57

There are several ways one could choose to set up the Kalman filter for the

same task, for example, it is possible to work at lower level of abstraction such as

individual wheel speeds or even the pixels in the image, however the linear version of

the Kalman filter would generally not be applicable in these cases and the

implementation would be more complex. Our implementation uses another simpler

intersection-based filter output as its input to merge the directly observable noisy

location data with more stable but eventually drifting odometer data producing smooth

and accurate results in the simulator

2.3.6 Particle filter localizer

 The particle filter is an alternative localization technique discussed in this thesis

which does not rely on any other input but the distances and azimuth angles to the

landmarks on the field.

 The general idea is to create a set of particles, each with the pose initialized at

the known starting point of the robot. Then a set of landmarks is defined, each having a

name and global position x, y. For current implementation, just the distances and

angles to the two goals are used but this list could be extended for better localization if

we could detect more landmarks such as the field center, corners and intersections. At

each iteration of the algorithm (that generally corresponds to the new frame of

information extracted from the cameras), all of the particles are moved by the relative

motion vector extracted from the odometer plus some additional movement and

orientation noise individual to each particle. This evolves the set of particles to a new

state where they deviate from each other and spread out a little, enabling them to

represent states that the odometer data alone would not take and it is likely that some

of the particles will move closer to the real position of the robot.

Next, measurement data from the cameras is considered in the form of

distances and angles to landmarks. For each particle, the probability of observing given

measurements is calculated. For example if we measured that both goals are at

approximately equal distance from the robot, a particle in the corner of a field would not

match this observation data well as we’d expect the robot to be somewhere in the

middle of the field. Based on the calculated measurement probabilities, the set of

particles are resampled where the ones which matched the measurement data more

precisely are more likely to appear in the resampled set.

 58

 The particle filter is implemented in the simulator in JavaScript file

library/sim/ParticleLocalizer.js. The main setup code for the algorithm is given in Code

Listing 12. In the constructor, one can see five input parameters – how many particles

to use and the various noise parameters for translation and orientation, sensing the

distance and angle. These are tunable to change the characteristics of the filter. One of

the strengths of the particle filter is that the trade-off between performance and required

computational resources is easily configurable by changing the number of used

particles.

Lines 17-22 define the particle that is nothing more but the pose combined with

probability of the particle getting resampled in the update phase. Lines 24-33 implement

initiating the set of particles uniformly distributed across the playing field. Alternatively,

the particles could be initialized at a specific position and orientation using the

setPosition method defined on lines 42-49, as generally we know the starting position of

the robot at the start of each round. Lines 35-40 define the method for registering new

landmarks, each having a name and a position.

 59

Code Listing 12. Particle filter setup.

 60

 Code Listing 13 shows the two main methods of the particle filter that implement

the move and update steps of the algorithm. The move method gets the relative velocity

x, y components and the omega as input that are extracted from the odometry. There

are two additional parameters: dt that marks how long the last step took and exact

which, when true, indicates that robot cameras failed to spot any landmarks. This

information is used in lines 58-66 so that in case no landmarks were observed, no noise

is added to the odometry information that could cause the particles to diverge without

the update step resampling them according to the measurement data. The update

method simply updates the position and orientation of each of the particles by applying

the odometry movement combined with some artificial noise evolving the particles to

new states.

 The update method is passed a map of measurements as input where the keys

are the names of the landmarks and the values include the distance and angle to given

landmark. For each particle, the probability of observing such measurements given the

particle pose is calculated. The update loop keeps track of the largest probability

observed and uses this in lines 96-98 to normalize the probability to the range between

zero and one. Finally in line 100 the set of particles are resampled based on their

measurement probabilities.

 61

Code Listing 13. Move and update methods of the particle filter implementation.

 Code Listing 14 starts with the measurement probability calculation method. As

input, it receives the particle under consideration and the map of measurements

extracted from the camera image. The probability is initiated with a value of one. The

algorithm then cycles through all of the measurements available for given step. As the

landmarks are uniquely distinguishable in our case (we can detect whether the goal is

 62

yellow or blue), we can directly map the measurements to landmarks. The algorithm

then extracts the observed distance and angle to the landmark and calculates the

expected distance and angle given the particle’s current position and orientation. Sum

of Gaussians from the differences of these expected and observed measurements are

then multiplied to form the probability metric. Two configuration variables for expected

distance and angle noise are included in this calculation. As the probabilities from

multiple landmark measurements are multiplied, several strongly correlating

measurements fortify the overall probability and vice versa.

 63

Code Listing 14. Measurement probability calculation and resampling procedure.

 The second method resamples the set of particles based on their measurement

probabilities. While the probability value returned by the measurement probability

function does not have a fixed range, remember that the update method discussed

above normalized the probability values to 0..1 range. The resample method

implements low-variance sampler algorithm introduced in section 1.4.5 and requires

 64

linear time in the number of particles. The basic idea is that we divide the particles on a

ring where the size of the “slice” each particle occupies is proportional to its

measurement probability. We then start with a random particle index from the set and in

a loop, resample a new set of the same number of particles. To do so, beta is increased

by a random uniform value between zero and twice the largest probability in the set

(note that since in our particle filter implementation, the probabilities are normalized, the

largest probability value is always one so this is omitted). Now for as long as the

probability of particle at given index is smaller than this beta, the current index particle

probability is subtracted from beta and index is increased. Eventually we will find a

particle that matches the beta value and this is resampled into the new set. Notice that

the uniform random value added to beta can be small enough so that the same particle

can be picked several times. This method of resampling is illustrated in Figure 24.

Figure 24. Particle filter efficient resampling algorithm example [18].

 The last step of the particle filter is extracting a single pose from the set of

particles. As we are dealing with local localization problem with a single position

estimate, this implementation simply averages the positions and orientations of the

entire particle set as shown in Code Listing 15. One needs to be careful when working

with orientations as generally angles are kept in the range from 0 to 360 degrees (2π).

If the algorithm just averaged the angles, some of which are for example just above

zero and some just short of 360, one would get values around 180 degrees, which is

not correct. Thus the algorithm does not limit the range of angles during its execution,

but rather the orientation is truncated to the normal range only in the pose extraction

method.

 65

Code Listing 15. Extracting position and orientation from set of particles.

 66

 67

3 Algorithm performance comparison

 In the following sections we tune the parameters of the localization algorithms to

work best in the simulation environment and then compare their performance. As the

simulator works in modern browsers without the need for compilation, the reader is

encouraged to clone the open-source repository at

https://github.com/kallaspriit/Robocup-Simulator and play around with it and the various

algorithms.

3.1 Simulator setup

 As part of the thesis, an application was developed that simulates the main

dynamics of a soccer-playing robot, enabling the development and testing of more

complex algorithms such as localization methods described in this thesis. Using a

simulator is useful as complex algorithms tend to be hard to test on a physical robot.

Once the robot is started, it is hard to understand why it is behaving the way it behaves

and what is the internal state of the robot. The simulator is written in JavaScript using

HTML5 web-technologies making experimenting efficient as there is no need to re-

compile the code on every iteration. Figure 25 shows it in action with a legend of data it

visualizes. Simulation also makes the code easier to debug as modern browsers

include powerful developer tools enabling setting breakpoints on live code, setting up

watch expressions and stepping through code. At any point during development and

testing, there is a clear overview of what the robot sees and thinks of the environment

around it.

 The simulator accurately models the omnidirectional motion model as described

in the motion model and odometry Section 2.2. The same code was ported to C++ for

the real robot and it worked without modifications, showing the power of simulator-

based prototyping. The motion model also specifies the way of calculating motion from

wheel-speeds used for odometry. The virtual odometer includes a Gaussian noise

model proportional to the rotational velocity of individual wheels. This makes the

odometry data drift from true position in time as is the case for the real robot.

The camera is modeled as a polygon defining a field of view denoted by the

lighter area in Figure 25. The camera reports back the distance and relative angle from

robot’s orientation to the balls and goals that are located in camera view. Gaussian

noise is also added to the distance and angle readings with the error increasing with

https://github.com/kallaspriit/Robocup-Simulator

 68

distance as is the case with the real robot. The playing field, balls and robot have

accurate dimensions and approximately realistic attributes such as maximum velocity

and turn rate. The simulator includes basic physics simulation of the balls bouncing off

walls, the robots and each other.

The robot is controlled by setting the relative direction to move at (the robot

utilizes omnidirectional wheels enabling moving in any direction), how fast to move and

how fast to turn about its axis at the same time. In the front of the robot there is an area

in which balls get attached to the robot when approached, simulating the dribbler

mechanism holding the ball. The robot also has a kicker mechanism enabling it to

propel the ball in the same direction that it is facing. The robot itself does not have any

behavioral logic, it is commanded by a controller. The robot can be controlled by

different controllers such as different control algorithms or people using keyboard or

gamepad. This separation makes it easy to test different controller algorithms on a

single robot model.

Figure 25. Simulator screenshot with legend.

 69

3.2 Test methodology

 The simulator includes a simple control algorithm that can win the game (i.e.

clear the field of the balls) in about 27 seconds on average. For general simulation

purpose, the ball positions are generated randomly, symmetrical to the centerline, but

for localization algorithm testing, the positions of the balls were fixed so the path that

the robot takes was always the same. This reduced the variation of localizer

performance. Small variation remained as the noise in the odometer and filters are

generated randomly.

 In the simulator, we always precisely know the actual position and orientation of

the robot so we can directly compare it to the pose predicted by the localization

algorithms. At each iteration of the simulator, the distance error from the real location of

the robot to the one predicted by the localization algorithms is calculated and stored.

From this information set, the average error (average difference between real and

predicted position) is calculated. The same metric was calculated for the difference in

orientation.

3.3 Simulator parameters

 The simulation environment and localization algorithms include a number of

user-tunable parameters. While it’s hard to create a simulator that would very

accurately match the real world, the environments behave sufficiently similarly to test

out various ideas and map the strengths and weaknesses of algorithms. Below is the

table of defaults for the most important simulation parameters.

Parameter name Value Comment

Timestep 1/60th seconds. Simulation runs at 60 FPS.

Vision distance noise
Gaussian noise 0.1m
multiplied by distance to
object.

Objects further away are
sensed with more noise.

Vision angle noise 5 degrees Gaussian noise.
Error on the real robot is
likely not Gaussian, but
works for simulation.

Wheel angular velocity
noise

Gaussian noise 0.3
multiplied by the angular
velocity of given wheel.

Faster spinning wheels are
noisier.

 70

3.4 Experiments

 The following section tests the localization algorithms and attempts to tune them

for best performance. The odometer- and intersection-based solutions are not tunable

as their performance depends solely on the amount of noise introduced into the system.

3.4.1 Odometer and intersection based localizer

 The pure odometer and intersection based localizers do not have any

parameters to tune but one may investigate the relationship between the amount of

noise in the system and their performance.

For odometer, the noise in the wheel rotational velocities was gradually

increased and the localization error monitored both for distance from real location and

the difference in orientation. For lower noise values, two runs were averaged and the

localizer gave relatively consistent results. As the noise level increased, the variation

from run-to-run increased as the earlier the estimation got off track, the further it

deviated by the end of the round so five runs were averaged to obtain the result. While

this smoothed out the error curves, pure odometer approach still proved unusable for

even rather low noise. Graph 1 shows the distance and orientation errors with

increasing wheel velocity noise. The relationship seems to be linear – the more noise in

the system the more it will deviate from the actual pose.

 71

Graph 1. Odometer error in relation with the amount of noise in the system.

 For intersection localizer, the Gaussian noise of observed goal distances was

gradually increased. Remember that the applied noise is multiplied with the actual

distance to the goal so that the distance to a goal near the robot is determined with

more precision than to one further away. This is the observed behavior of the real robot

and makes sense as objects further away occupy less vertical pixels than those close

by. Graph 2 shows the localization error with increasing observed goal distance noise.

While the relationship is more or less linear, it should be noted that with higher noise,

the position estimate varied by large amounts from frame to frame in the simulator

making this information hard to process for any control algorithms. On a real robot, the

goal distance observations are expected to be more stable and depend more on the

motion of the robot as slightly uneven terrain and omni-wheels produce vibrations.

 72

Graph 2. Intersection localizer error with increasing goal distance noise.

3.4.2 Kalman filter localizer

 The Kalman filter localizer implementation is primarily affected by the following

parameters:

Parameter name Comment

Vision distance noise
Affects the performance of intersection-localizer used as
base. Objects further away are sensed with more noise.

Process error
Expected error in the model, smaller value makes the
filter rely more on the model and larger on
measurements.

Measurement error
Expected error in measurements, smaller value makes
the filter rely more on the measurements and larger on
model.

 73

Initial covariance
Defaults to a low value of 0.0001, has little effect as the
initial pose of the robot is known.

 Graph 3 shows the relationship of Kalman filter accuracy to observed goal

distance noise. As expected, the curve has similar shape to intersection filter as the

latter is used as observation input. The absolute values here have little meaning as they

depend on how the filter is configured as when relying more on the observation data, it

will more closely follow the intersection localizer while relying more on motion model

(smaller process error and larger measurement error), it will follow the odometer

localizer results. This tunable fusion of observation data with model information is what

makes the Kalman filter useful for our purpose.

Graph 3. Kalman filter location accuracy based on goal observation distance noise.

 74

 This section studies the effect of process error and measurement error

parameters. It is not possible to set the process error to equal zero as this would result

in a zero-filled innovation covariance matrix that cannot be inversed. Setting

measurement error to zero will make the filter follow measurements exactly making the

filter do basically nothing but repeat the input observations from the intersection filter.

 Graph 4 shows the Kalman filter performance with increasing measurement

error configuration parameter. The distance noise used for these experiments was 0.1m

and the wheel rotational velocities noise 0.3 as determined to be realistic to the eye in

comparison with the real robot. The process error was set to a low value 0.0001,

representing a reasonably low noise in the odometer although the best value for this

parameter is not easy to determine. On average, the localization error in both position

and orientation is not greatly affected by the measurement error parameter. On the

other hand, visually, the effect is noticeable as with smaller expected error, the position

estimate varies considerably from frame to frame making it not a good input to any

control algorithms. When the expected measurement error is large, the estimate

becomes much more stable but the algorithm also becomes more susceptible to longer

periods of heading in the wrong direction and larger error as it takes some time for the

measurements to propagate and relocate the lost estimate. An optimal value of 0.25

was finally chosen for the simulation giving visually sufficiently stable yet responsive

behavior.

 75

Graph 4. Kalman localizer measurement error parameter effect.

 The process error parameter has similar effect to measurement error as tuning it

makes the filter follow more either the measurement information or the motion model.

Graph 5 shows that the parameter has little effect on the average location error and

orientation error tends to increase with smaller parameter value. For larger process

error parameter values, the filter follows the measurements and the position estimate is

not stable. For smaller values, the estimate becomes more stable but the chances of

the localizer getting off track is bigger as location error takes more time to be recovered

from measurements. A value of 0.0001 was chosen for this parameter which provided

the best compromise between short and long term stability.

 76

Graph 5. Kalman filter process error parameter effect.

3.4.3 Particle filter localizer

 The particle filter has four main configuration parameters – the number of

particles, forward movement noise and turn noise and the expected goal distance

sense noise.

Parameter name Comment

Forward noise
Smaller value makes filter more stable, larger makes it
less likely to lose track and reacquire it faster should it
happen

Turn noise
Smaller value makes filter more stable, larger makes it
less likely to lose track and reacquire it faster should it
happen

Distance sense noise
Smaller value focuses the particles more near
measurements, larger allow relying more on the model

 77

with noisy sensors

Number of particles
Larger value provides better accuracy at the expense of
increased computational resources required

The following experiments use vision noise of 0.1m which is the same as

actually generated noise. For number of particles, a value of 1000 is used while tuning

the forward and turn noise. These movement noise parameters are not independent so

tuning them individually is not straightforward. Turn noise value of 45° was used while

testing the forward noise.

Graph 6 shows that the average pose error is mostly flat or slightly decreasing

with larger simulated forward noise. It was observed that a low value provides more

stable location estimate but is more subject to losing track of real location and takes

longer to recover from such an event. Larger generated noise on the other hand makes

the estimate unstable but recovers quicker as the particles get spread further apart and

thus there are more particles near the real location should the localizer lose track. A

value of 0.75 was determined to give the best results and will be used in later

experiments.

 78

Graph 6. Particle filter forward noise parameter effect.

 The second motion noise parameter to tune is the turn noise. Graph 7 shows

the localizer performance with increasing generated turn noise. It was observed that low

values are more subject to losing track of the real location as the particles do not

spread much and are more likely to all head in the wrong direction. High values

introduced large spread which helps resolve losing track issues but produce excess

noise, making the estimate unstable and introducing tracking problems. A medium

value of 45° proved to work reasonably well in the simulator.

 79

Graph 7. Particle filter turn noise parameter effect.

 Next important parameter to consider is the expected distance noise. This sets

the relationship between measurement probability and by which degree is the observed

value different from expected value. As Figure 26.a demonstrates, a low value causes

less particle spread as only those close to the measurement values are likely to survive

(get resampled). This makes the filter behavior less stable. A large value shown in

Figure 26.b makes the particles spread out making the filter more stable but also more

subject to drifting away from true location as particles further away from expected

location get resampled back into the set more likely. Large values thus have more

variance, sometimes performing well and other times losing track. Graph 8 shows the

localization performance with increasing expected distance noise. A medium value of

0.1 was observed to work well which is expected as it is the same as the actual

generated goal distance Gaussian noise.

 80

Figure 26. Particle filter distance noise setting affecting particle spread.

Graph 8. Particle filter expected distance noise parameter effect.

 81

 An interesting thing to notice is that when the robot only sees a single goal,

there is generally a circle of possible locations it could be at. Given enough time for the

particles to deviate can produce a situation like shown in Figure 27 (it took about 10

minutes to evolve to such state). Once the robot started moving and saw both goals

again, the localizer was able to quickly recover. One could add extra rules not to allow

particles to stray outside the playing field.

Figure 27. Observing a single goal for prolonged period of time.

 The last parameter of the particle filter is the number of particles to use.

Previous experiments were carried out using a set of 1000 particles. Graph 9 shows

that current application needs about 500 particles to perform well with increasing

particle number not providing much performance benefit. It was observed that

sometimes as few as 50 particles can perform quite well as long as the localizer does

not lose track of the robot pose. If it does then the filter utilizing fewer particles does not

recover well. Using many particles on the other hand made the filter more accurate and

stable as expected but starting from about 1000 particles, additional ones had very little

effect and do not justify the performance penalty so a value of 1000 was chosen as best

compromise between accuracy and speed.

 82

Graph 9. Particle filter particle count effect.

3.5 Performance comparison

We have gone over the parameters of all of the implemented localization

algorithms and tuned them to produce the best results. While this method was not very

precise as most of the parameters tend to affect each other and in addition to average

pose error, the produced estimate stability and variance had to be also taken into

account, it was found adequate for comparing the algorithms.

The experiment averages the performance of each localization algorithm over

ten runs. This provides a good average performance of each algorithm as well as the

variance from run to run. The results can be seen in Graph 10 which show the average

 83

position and orientation errors of the implemented algorithms including error bars

showing 95% confidence level.

As expected, the pure-odometer solution has the worst performance with

average location error over half a meter, rendering this approach unusable for any

practical use. The absolute error values have little meaning as this is the result of

configurable noise injected into the system, the important aspect is that approximately

this level of inaccuracy was observed for the physical robot implementation, making it

realistic input to other localization algorithms.

The intersection localizer performance is stable but poor as far as location error

is concerned but has the smallest average orientation error. What the shown numbers

fail to convey is the large amount of noise in the pose estimate of this method from one

frame to another. As the location estimate is very unstable, it would be a poor input to

any control algorithms. While the general trigonometry behind this approach is not

complex, care must be taken to solve the symmetry ambiguity as well as when

averaging angle values. There are also special cases of seeing a single or no goals

which need to be handled for optimal performance.

Kalman filter performance is stable and the pose estimate is sufficiently accurate

to rely on for building control algorithms on top of. Kalman filter could be implemented in

several ways for given problem, but working on lower level of abstraction would likely

make the problem non-linear requiring more complex extended Kalman filter or other

non-linear variants. As a personal note, the Kalman filter algorithm was found to be the

hardest to understand as well as implement. One generally needs third party libraries

for working with high-dimensional matrices that support among other operations matrix

inversion. This made porting the code from JavaScript simulator to C++ robot more

complex.

Particle filter achieved the best performance in estimating the pose of the robot.

It provides reasonably stable results but in its current implementation, it is subject to

pose estimate error due to the symmetry of the field and distance to goals as shown by

Figure 28. This problem could be alleviated by for example injecting a small number of

particles at the symmetrical location of the estimate that should be more likely to get

resampled as their observed goal angles would match the reality better. The author of

this thesis found the particle filter approach the most elegant, easiest to understand and

implement without requiring more complex math and this approach is not limited to

 84

linear systems. The algorithm also provides a configurable tradeoff between pose

estimate accuracy and required computational resources.

Graph 10. Localization algorithms performance comparison.

 85

Figure 28. Particle filter failing due to symmetry of the field.

 86

 87

4 Physical robot experiments

4.1 Implementation

 This short section describes the algorithm implementation process for the robot

and the author’s subjective experience. All four localization algorithms described in the

thesis and implemented in the simulator were also ported to C++ and tuned to work on

the real robot. Porting the Kalman filter proved to be the most difficult as it requires

working with n-dimensional matrices. The Armadillo [14] library was chosen for the task.

Other simpler libraries considered did not support matrix inversion so one must be

careful choosing appropriate library. Porting the other algorithms was more

straightforward and they worked practically in the first tests.

A few hard to find bugs were encountered where an algorithm would fail after

running for some time or under certain circumstances that were not observed in the

simulator. The first one was due to trying to take asin for values not confined to the -1..1

range. The second was taking square root of a subtraction which, under noisy data

circumstances, could be negative. Both of these were difficult to find as debugging C++

code running in a separate computer on the robot is cumbersome. Considering how

much debugging developing the initial algorithms required, stepping through the code

and following the progress on the screen, implementing these algorithms directly on the

robot would have proved difficult and time-consuming, showing the power of prototyping

in the simulator.

4.2 Test setup

 Assessing the performance of the localization algorithms on the real robot and

soccer field is not as straightforward as with the simulator as there is no simple way to

know the actual position of the robot at any given time. As shown in Figure 29, four

markers were placed on the field at known locations as reference points.

 88

Figure 29. Markers at known positions were placed on the field as reference points.

The robot’s computer is connected to the internet over wireless network and the

control program sets up a WebSocket [15] server that allows for real-time full-duplex

communication between the robot and a web-application running in a web-browser.

This communication link provides telemetry information about the robot’s view of the

environment including where each of the localization algorithms believes the robot is

currently located. The debugging interface also renders the four markers placed on the

field in the same locations as red circles, enabling comparing the predicted and real

positions. Figure 30 shows how all four algorithms predicted path of the robot while

driving a rectangular trajectory between the four markers. Note that in these tests, the

robot is piloted manually using remote control so some of the noise can be attributed to

imprecise driving.

 89

Figure 30. Visualization of all four algorithms while driving a rectangle between the

points. Green is particle filter, blue Kalman filter, brown intersection localizer and small

dark red is using only odometry.

4.3 Tuning

 The algorithms were first tuned to work best on the robot. The same

configuration parameters that were used in the simulator actually worked reasonably

well on the physical robot, indicating that the simulation is sufficiently accurate for

deducing some conclusions. As was actually guessed while developing the simulator,

the noise in the odometry system was somewhat poorly modelled as just applying

Gaussian noise to wheel speeds is not accurate. The odometer is actually quite precise

under low acceleration conditions with little dependency on wheel speed, but slipping of

wheels can happen when the robot performs rapid maneuvers. The odometer is also

more precise when either only moving straight or rotating on the spot, combining

translational and rotational motion causes larger error. Thus a better model for

odometry noise would depend on the acceleration of each wheel and the amount of

rotational motion. For Kalman filter, the process noise was reduced and for particle

filter, the generated forward and turn noise were also reduced. This made the

algorithms rely more on odometry input providing less noisy pose predictions.

 90

4.4 Results

To better understand the actual path of the predicted location estimate rather

than just comparing poses at fixed locations, the browser telemetry tool renders the

path between every predicted pose. Figure 31 shows the predicted path of the robot

given by the intersections-based localizer while the robot was driven in a rectangular

path between the markers on the field, also rendered as red circles in the tool. As can

be seen, the path is very noisy, implying that the observed distances to the two goals

vary considerably from measurement to measurement.

Figure 31. Noisy location estimate of intersection-localizer.

For goal distances, Gaussian noise seems to be quite accurate model although

there is often some offset from the real distance. In the simulator, the observed

distances fluctuated around the real distance but this is often not the case in the real

world as sometimes the observed distance is on average more or less than real

distance, depending on robot position, motion, whether the carpet is slightly uneven or

whether any of the wheels are on slightly higher white lines of the field. When the robot

is situated on the horizontal axis of symmetry (the line between the two goals), this

 91

offset often causes the circles inferred from goal distances to either not intersect at all

or intersect more than a bit as shown in Figure 32. This makes the Kalman filter perform

not so good near this centerline, particle filter was observed to be less affected.

Figure 32. Circles not intersecting, robot’s real position is in the center of the field.

 The reason why object distance observation becomes less accurate with

distance is that the cameras of the robot are located not far up from the ground so the

further away the object, the less screen pixels correspond to each unit of distance as

shown in Graph 12. For example between 3 and 3.5 meters there is only about 8 pixels

difference and the vibrating robot in motion can easily generate that amount of tilt in the

camera image.

 92

Graph 12. Mapping between screen pixel row and object distance.

 The particle filter proved to produce the best results that are sufficiently

accurate, low noise and high stability. For stability conformance, the algorithm was

tested while driving around the field for extended period of time (around 10 minutes)

continuously performing various maneuvers and rapid movements. Particle filter did not

lose track of the location of the robot and was even able to recover the right position

after some time when initialized in the wrong position. Figure 33 shows four attempts of

driving the robot in a rectangular path between the four markers, starting and ending in

the top-left position. Note that the robot was driven manually so some of the noise is

due to corrections in the driving. As can be seen, the error of the robot position rarely

exceeded about 10 centimeters which can be considered sufficient performance for

using as valuable input to control algorithms. Considering the large noise in the goal

distance measurement, the algorithm actually performs better than was anticipated.

 93

Figure 33. Four runs of particle filter driving rectangular shape between the markers.

 As an indication of how particle filter corrects the error introduced into the

odometry data, Figure 34 compares the paths of pure-odometer (small dark red circle)

and particle filter (big green circle) driving the rectangle in a violent manner, inducing

some wheel-slip on purpose. While this makes the particle filter estimation also less

accurate, it is able to recover the true pose in the end near the top-left marker while the

odometry pose has drifted considerably. Under more calm driving techniques, the

odometer does not drift nearly as much.

 94

Figure 34. Comparison between particle filter and odometer under rapid maneuvering.

 The Kalman filter implementation did not work as good as in the simulator which

is due to the rather large noise in goal distance sensing. Its performance suffered

especially when executing violent maneuvers such as shown in Figure 35, driving

rectangular shape with large accelerations (blue is Kalman, green particle filter). During

some tests, the filter lost track of the real pose of the robot and took considerable time

to recover (about 20 seconds). For given implementations, the particle filter showed to

perform the best.

 95

Figure 35. Comparison of particle and kalman filter.

4.5 Future work

 While implementing and testing the algorithms on the physical robot, several

observations were made that gave ideas for improvements not yet implemented.

 The first idea has to do with goal distance and angle calculation. Since this is

the main source of information for odometer error compensation, retrieving correct

values is critical. The first problem with this approach was discussed before and has to

do with the positioning of the cameras, making objects further away having less

resolution in the camera image as shown in Graph 12. Ways to alleviate this problem

would be to either mount the cameras up higher or increase the resolution of processed

images, both of which are planned for next year’s competition. Another issue with goal

distances is that they are currently calculated from the bottom of the detected goal axis-

aligned rectangle, rather than the actual center-point, which introduces some error

when looking at a goal at an angle as shown in Figure 36. The error introduced by this

is not great but could be fixed by finding the actual bottom center point of the goal.

 96

Figure 36. Goal distance calculation error at large angle.

 Another issue with distance calculation is the fact that the camera image from

the the wide angle lens is distorted. Figure 37 shows how the robot sees the centerline

of the field, which is actually perfectly straight but appears to be elliptic. Combined with

low pixel resolution of distant objects, an object in the center of the view would appear

to be further away than those at the edges of the image with considerable error at

distance. This could be one of the reasons that the particle filter was biased towards the

centerline of the field in Figure 33.

 97

Figure 37. Object distance calculation error due to warped camera image.

 One of the main limitations of currently implemented approach is the small

number of landmarks as only goals are used for localization. This problem is made

worse by the fact that in certain orientations, the robot may see only one or no goals

and it is often quite far away from at least one of them, making the distance

measurements imprecise. This situation could be improved by extracting additional

landmarks from the camera images such as those shown in Figure 38. Panel A shows

the center circle with center-line through it. This could be used for both distance

calculation, as it has a known position, as well as orientation compensation as the

ellipse with a line through it appears different from various angles. Panel B shows a

corner of the field. While this is not uniquely detectable (the field has four identical

corners), it could still be used as input to the localization algorithms. The same applies

for images C, D which show the T-shaped intersection in the centers of the field and

line in front of the goals, respectively. The problem with using these landmarks is that

they are not trivial to extract from the camera image and require advanced image

 98

processing techniques, but there are still plans to implement at least some of these for

the next competition.

Figure 38. Additional possible landmarks that could be extracted from computer vision.

 Both Kalman and particle filter provide configuration parameters that allow

tuning the balance between how much to rely on the odometry data versus

measurement data. Currently these parameters are statically defined, but expected

measurement noise could be a function of landmark distance as error is increased for

objects further away. This would mean that the algorithms could rely more on the

measurements of nearby object while relying more on the odometer when landmarks

are not nearby. Similarly, the odometer is more reliable at lower acceleration rates. The

robot control logic could actually limit maximum acceleration of the wheels making the

maneuvers smoother and thus less susceptible to slipping.

 99

Summary

 Robot localization techniques attempt to solve the problem of estimating mobile

robot pose relative to an external frame of reference. Autonomous robots navigating in

dynamic natural environments require localization techniques that can explicitly account

for the inherent uncertainty in such systems, which cannot be modeled precisely. Often

the pose of the robot cannot be directly observed, but instead needs to be inferred from

various indirect sensor measurements. Noisy data from several sources of information

such as camera images, distance sensors and actuator feedback are fused together to

build a probability distribution over all possible states, representing where the robot is

believed to be located with some degree of confidence. The state estimation is

performed recursively, improving the belief incrementally over several steps of

movement and sensory data integration.

The goal of this thesis was to explore and compare various techniques for real-

time autonomous robot positioning and to develop a working localization solution for a

soccer-playing robot. The first part gave a theoretical overview of the statistics

background and Bayes filtering. Two main algorithms were covered in detail – the

Kalman filter and the particle filter, both solving the same problem in a slightly different

manner. Then the algorithms were applied for the special case of an autonomous

soccer-playing robot “Telliskivi II” according to Robotex 2012 professional football

league rules. A simulator was made for developing, testing and evaluating the

algorithms, which proved to be very useful, because implementing and testing complex

algorithms directly on the physical robot would have proven inefficient and time-

consuming, as debugging on a mobile robot platform is difficult. The effects of the

various algorithm parameters were investigated and tuned to perform best in the

simulator. The performance and properties of the algorithms were compared. The

algorithms were then ported over to work on the physical Telliskivi II robot and once

again tuned and compared.

Pure odometry-based solution proved to be inefficient at long term localization.

Noise in the system and unpredictable events such as wheel slip quickly made the

estimate drift from the true pose. The intersection-localizer used the two back-to-back

cameras on the robot to calculate approximate absolute position on the field using

distances to the two goals and interpolating between states referencing odometry

information while a single or no goals are visible. As the goal distances measurements

are not accurate and vary considerably when the robot is in motion, this solution proved

 100

to be too noisy for using as input to any control algorithms. A Kalman filter solution was

developed that uses the noisy estimate from intersection-localizer and fuses this with

odometry data to provide a much smoother pose estimate. Another method using the

particle filter approach was developed that uses the distances and angles to the

landmarks, combined with odometry data. The author found the particle filter to be the

most elegant, easiest to understand, implement and capable of dealing with non-linear

problems.

The performance of the Kalman filter and particle filter based implementations

were quite similar in the simulator with particle filter performing marginally better. On the

real robot, particle filter proved to provide superior results with the position error rarely

exceeding 0.1 meters from the true pose and the algorithm not losing track of the real

location even under violent driving. It was also capable of re-acquiring the correct pose

when the robot was kidnapped – i.e. moved to a different location manually. Thus the

main goal of the thesis of developing a working localization solution for the soccer-

playing robot was achieved.

There are still several ideas that the author plans to investigate to improve the

localization performance. It is possible to develop better algorithms and hardware for

more accurate distance and angle sensing. In addition, extracting additional landmarks

on the field (such as the center circle, corners and intersections) using computer vision,

and relying on them in the algorithms, should further increase localization quality.

The Telliskivi II robot came second in 2012 Robotex professional football league

competition. Using the localization technique developed in this thesis, the team hopes

to build a smarter robot with ambition to win the 2013 competition.

 101

Resümee (eesti keeles)

Roboti lokalisatsioon püüab lahendada probleemi, kuidas määrata mobiilse

roboti asukohta keskkonnas välise taustsüsteemi suhtes. Autonoomsed robotid, mis

navigeerivad naturaalses ja muutuvas keskkonnas, vajavad lokalisatsioonialgoritme,

mis arvestaksid säärastele süsteemidele omase müra ja ebakindlusega. Tihtipeale pole

roboti asukoht otseselt vaadeldav, vaid seda tuleb järeldada mitmete sensorite

kaudsetest mõõtmistest. Edukad algoritmid kombineerivad andmeid mitmetest

sensoritest nagu kaamerad, kaugusandurid ja mootorite tagasiside, milledele kõigile on

omane teatud ebatäpsus ja müra. Nende andmete põhjal loovad statistika-põhised

lokalisatsioonialgoritmid tõenäosusjaotuse, mis näitab, kus robot arvab end mingi

kindlusega asuvat. Positsioneerimine toimub rekursiivselt, integreerides olemasolevale

parimale pakkumisele juurde uusi mõõtmisi, nõnda ajas täpsust parandades. Roboti

liikumine toob kaasa ebakindluse suurenemist, mõõtmised aga vähendavad seda.

Teesi eesmärk oli uurida ja võrrelda erinevaid lokalisatsioonialgoritme reaalajas

autonoomse roboti positsioneerimiseks ning luua toimiv lahendus jalgpalliroboti

positsioneerimiseks. Selle esimeses osas anti ülevaade valdkonna statistilisest taustast

ja tutvustati Bayesi filtreerimist. Põhjalikumalt keskenduti kahele algoritmile – Kalmani

filtrile ja osakeste filtrile (ingl.k particle filter). Seejärel uuriti nende algoritmide

kasutamist jalgpalliroboti „Telliskivi II“ positsioneerimiseks Robotex 2012 profijalgpalli

liiga reeglite kohaselt. Arendati välja simulaator, mille peal sai lokalisatsiooni-algoritme

arendada, testida ja võrrelda. Simulaatori loomine õigustas ennast, sest keerukate

algoritmide arendamine otse päris roboti peal olnuks keeruline ja aeganõudev, sest

koodi testimine ja silumine mobiilse arvuti peal on keerukas. Teesis uuriti algoritmide

parameetrite mõju ja häälestati need pakkuma parimat tulemust. Seejärel võrreldi nelja

implementeeritud lokalisatsiooni-algoritmide suutlikkust. Samad algoritmid said üle

viidud ka pärisroboti peale.

Odomeetria-põhine algoritm kasutab roboti rataste kiiruste andurite tagasisidet,

mille järgi arvutatakse roboti dünaamikat arvestades välja selle liikumistrajektoor. Testid

kinnitasid hüpoteesi, et selline lähenemine pole pikaajaliseks lokalisatsiooniks sobiv,

kuna ebatäpsus ja müra süsteemis kombineeritud ettenägematute sündmustega nagu

rataste libisemine, toovad kiiresti kaasa positsiooni hinnangu kõrvalekalde

tegelikkusest. Siiski on odomeetria-andmed kasulik sisend teistele algoritmidele.

Telliskivi II robotil on kaks teineteisega seljakuti asuvat kaamerat. Teine

implementeeritud algoritm kasutas neid hindamaks kaugusi kahe jalgpalliväljaku

 102

väravani, millest sai tuletada roboti asukoha platsil. Nähes vaid ühte või ei ühtegi

väravat, tugineti odomeetria-andmetele. Kuna aga väravate kauguste hindamine

liikudes vibreeriva roboti peal on ebatäpne, siis selle lähenemise positsiooni-hinnang

tõestas end olevat kontrollalgoritmides kasutamiseks liialt mürane. Selle müra

silumiseks sai loodud Kalmani filtri põhine lahendus, mis kasutab sisendina eelmist

väravate kauguste põhist mürast hinnangut ja odomeetria-andmeid. Nõnda

parandatakse odomeetria kõrvalekallet mõõtmiste abil. Viimane neljas meetod põhines

osakeste filtril, mis kasutas sisendina samuti väravate kaugusi ja nurkasid nendeni ning

ühendas selle info odomeetria-andmetega. Kui Kalmani filter esitas tõenäosusjaotusi

normaaljaotuste abil, siis osakeste filtris moodustavad jaotuse suur arv osakesi, millest

igaüks esitab üht hüpoteesi roboti asukohast. Neid liigutatakse platsil odomeetria

andmete põhjal ning igal sammul jäävad suurema tõenäosusega alles osakesed, mis

sobivad paremini mõõtmistulemustega. Autor leidis, et just osakeste filtri lahendus on

kõige elegantsem ning lihtsaim mõista ja implementeerida.

 Simulaatoris andsid Kalmani- ja osakeste filter sarnaseid tulemusi, viimane

toimis natukene paremini. Mõlemad toimisid edukalt ka päris roboti peal, aga osakeste

filtri suutlikkus oli suurem ning asukoha viga ei ületanud enamasti 0.1 meetrit. Samuti

oli algoritm suuteline õiget asukohta pikka aega järgmina isegi agressiivse, rataste

libisemist põhjustava sõidu ajal. Algoritm oli enamasti võimeline ka roboti asukohta

mõistliku aja jooksul taas-leidma kui viimane käsitsi algoritmi teadmata uude kohta

tõsta. Seega sai täidetud üks teesi põhieesmärke luua toimiv lokalisatsioonilahendus

jalgpallirobotile.

 Autoril on veel mitmeid ideid kuidas loodud lahendust veelgi paremaks muuta.

On võimalik parendada algoritme ja riistvata, et hinnata huvipakkuvate objektide

kaugusi ja nurke täpsemini. Lisaks on võimalik suurendada algoritmide täpsust

tuvastades platsilt täiendavaid staatilisi objekte nagu platsi jooned, nurgad ja keskmine

ring.

 Telliskivi II robot tuli 2012 aasta Robotexi võistlusel teiseks ja kasutades antud

teesis esitatud ideid ja lahendusi, on meeskonnal plaan luua veelgi targem ja võimekam

robot ning esineda võidukalt 2013 aasta üritusel.

 103

References

[1] Leonard, John J., and Hugh F. Durrant-Whyte. "Mobile robot localization by tracking

geometric beacons." Robotics and Automation, IEEE Transactions on 7.3 (1991): 376-

382.

[2] King-Hele, Desmond. "Erasmus Darwin's improved design for steering carriages––

and cars." Notes and Records of the Royal Society of London 56.1 (2002): 41-62.

[3] Dudek, Gregory, and Michael Jenkin. Computational principles of mobile robotics.

Cambridge university press, 2010.

[4] Drocourt, Cyril, et al. "Mobile robot localization based on an omnidirectional

stereoscopic vision perception system." Robotics and Automation, 1999. Proceedings.

1999 IEEE International Conference on. Vol. 2. IEEE, 1999.

[5] Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Vol. 1.

Cambridge: MIT press, 2005.

[6] Lee, Peter M. Bayesian statistics: an introduction. Wiley, 2012.

[7] Azad Kalid. „An Intuitive (and Short) Explanation of Bayes’ Theorem“.

BetterExplained. 6. May 2007. Web. 25 February 2013.

[8] Coppersmith, Don, and Shmuel Winograd. "Matrix multiplication via arithmetic

progressions." Journal of symbolic computation 9.3 (1990): 251-280.

[9] Gan, Qiang, and Chris J. Harris. "Comparison of two measurement fusion methods

for Kalman-filter-based multisensor data fusion." Aerospace and Electronic Systems,

IEEE Transactions on 37.1 (2001): 273-279.

[10] Arras, Kai O., Jose A. Castellanos, and Roland Siegwart. "Feature-based multi-

hypothesis localization and tracking for mobile robots using geometric constraints."

Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference

on. Vol. 2. IEEE, 2002.

[11] Julier, Simon J., and Jeffrey K. Uhlmann. "Unscented filtering and nonlinear

estimation." Proceedings of the IEEE 92.3 (2004): 401-422.

[12] Neyman, Jerzy. "On the two different aspects of the representative method: the

method of stratified sampling and the method of purposive selection." Journal of the

Royal Statistical Society 97.4 (1934): 558-625.

[13] Kallas Priit. „Robocup Simulator“. Github. 2013. Web.

<https://github.com/kallaspriit/Robocup-Simulator>

[14] Sanderson Conrad. „Armadillo“. Sourceforge. 2013. Web.

<http://arma.sourceforge.net>

[15] Websockets.org. „Websockets“. 2013. Web. <http://www.websocket.org>

[16] Kallas Priit. „KalmanJS“. Github. 2013. Web.

<https://github.com/kallaspriit/KalmanJS>

 104

[17] Robotex. Web. 1. February 2013. <http://www.robotex.ee>

[18] Thrun Sebastian. „Artificial Intelligence: How To Build A Robot - Udacity“. Web. 5.

February 2013.

[19] MacQueen, James. "Some methods for classification and analysis of multivariate

observations." Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability. Vol. 1. No. 281-297. 1967.

[20] Guizzo Erico. “How Google’s Self-Driving Car Works”. IEEE Spectrum. 18. October

2013. Web. 06. May 2013.

[21] Rosenblatt, Murray. "Remarks on some nonparametric estimates of a density

function." The Annals of Mathematical Statistics (1956): 832-837.

 105

Non-exclusive license to reproduce thesis and make thesis public

I, Priit Kallas (date of birth: 14. January 1988),

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the

public, including for addition to the DSpace digital archives until expiry of the

term of validity of the copyright, and

1.2. make available to the public via the web environment of the University of

Tartu, including via the DSpace digital archives until expiry of the term of validity

of the copyright,

“Probabilistic Localization of a Soccer Robot”, supervised by Konstantin

Tretyakov M.Sc.

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the

intellectual property rights or rights arising from the Personal Data Protection

Act.

Tartu, 08.05.2013

