
An Overview of Two Fast Bit-Vector Approximate

String-Matching Algorithms

Konstantin Tretyakov

June 2, 2003

1 Introduction

The intent of the article is to give a brief overview and a rough comparison of
two well-known bit-parallel algorithms for fast approximate string matching.
The first one was described by Gene Myers in article [2] and is a bit-parallel
version of the basic algorithm based on dynamic programming. The second
one is an enhanced “Shift-Or” type algorithm by Sun Wu and Udi Manber
[3]. For sake of simplicity, only the most basic versions of the algorithms will
be considered here. Considering the existence of great articles [1], [2] and
[3], the whole idea of this work is pretty senseless, therefore it was mostly
done only for my own fun and satisfaction.

2 Approximate String Matching Basics

2.1 The Problem

Suppose we are given two sequences of characters—pattern P = p1p2 . . . pm

and text T = t1t2 . . . tn. The problem of approximate string matching is to
find all the locations in the text T , that contain the pattern P “approxi-
mately”. That is, we wish to find all the substrings in the text, that are
similar to P under some measure of similarity. The most common measure
used is the edit distance (also Levenshtein distance)—the minimum num-
ber of character insertions, deletions or substitutions required to obtain one
string from another.

2.2 Edit Distance

As already mentioned in the previous paragraph, edit distance between two
strings s and t is the minimum number of basic edit transformations (i.e.
character insertions, deletions and substitutions) required to convert s into
t. For example, edit distance between strings man and mad is 1, because
the second is obtained from the first by a single character substitution,

1

and the edit distance between the strings cost and cat is 2, because the
second can be obtained from the first by deleting o and replacing s with
t, whereas 2 is the least possible number of such operations. Here, edit
distance between two strings s1s2 . . . sm and t1t2 . . . tnwill be denoted by
d(s1s2 . . . sm, t1t2 . . . tn) or simply d(s, t).

It is easy to notice, that edit distance is a metric, that is,

d(s, t) = 0 ⇔ s = t

d(s, t) = d(t, s)
∀u d(s, t) ≤ d(s, u) + d(u, t)

The way to calculate edit distance is given by the following result:

Lemma 1 The recursive formula for calculating edit distance:

d(s1s2 . . . sm, t1t2 . . . tn) = min


d(s1s2 . . . sm−1, t1t2 . . . tn) + 1
d(s1s2 . . . sm, t1t2 . . . tn−1) + 1
d(s1s2 . . . sm−1, t1t2 . . . tn−1) + δmn


where δmn = 1, if sm = tn or 0 otherwise.

The idea of proof may be the following: suppose we have an arbitrary se-
quence of basic transformations of minimal length, that changes s1s2 . . . sm

to t1t2 . . . tn. Notice that the order of transformations in this sequence does
not matter, and that the number of transformations equals d(s, t). Then
there are 4 possibilities:

1. One of the basic transformations deletes sm. Then we may perform
this transformations first, so the total number of transformations in
the sequence will equal 1 plus the minimum number of transformations
needed to change s1s2 . . . sm−1 to t1t2 . . . tn. So in this case

d(s1s2 . . . sm, t1t2 . . . tn) = 1 + d(s1s2 . . . sm−1, t1t2 . . . tn)

2. One of the transformations substitutes sm to tk, where k < n. Then
there must be a tranformation that inserts tn. Reasoning analogous
to the previous case shows that then

d(s1s2 . . . sm, t1t2 . . . tn) = d(s1s2 . . . sm, t1t2 . . . tn−1) + 1

3. One of the transformations substitutes sm to tn (so sm 6= tn). This
possibility corresponds to the case where

d(s1s2 . . . sm, t1t2 . . . tn) = 1 + d(s1s2 . . . sm−1, t1t2 . . . tn−1)

2

4. At last, there may be no transformation that deletes or substitutes sm.
It means that sm must be matched against some tk (so sm = tk). If
k < n, then the situation is similar to the possibility 2, and if k = n,
then

d(s1s2 . . . sm, t1t2 . . . tn) = d(s1s2 . . . sm−1, t1t2 . . . tn−1)

By taking the minimum of these 4 possibilities we shall obtain the minimum
possible number of transformations to change s into t, which is by definition
d(s, t). Thus we come to the required result.

�

This result gives way for a simple dynamic programming algorithm
to calculate edit distance between s1s2 . . . sm and t1t2 . . . tn. The algo-
rithm calculates a (m + 1) × (n + 1) dynamic programming (d.p.) matrix
C[0 · · ·m, 0 · · ·n], such that C[i, j] = d(s1s2 . . . si, t1t2 . . . tj). The matrix is
initially filled with values C[0, j] = j for all j and C[i, 0] = i for all i. The
remaining values of the matrix are calculated by the formula of Lemma 1 :

C[i, j] = min(C[i− 1, j] + 1, C[i, j − 1] + 1, C[i− 1, j − 1] + δij)

After calculating the entire matrix this way, the value of C[m,n] will be the
edit distance d(s, t). Here is an example of such a matrix calculated for the
words booze and looser:

0 1 2 3 4 5 6
L O O S E R

0 |0 1 2 3 4 5 6
1 B|1 1 2 3 4 5 6
2 O|2 2 1 2 3 4 5
3 O|3 3 2 1 2 3 4
4 Z|4 4 3 2 2 3 4
5 E|5 5 4 3 3 2 3

Here we find that the edit distance between these strings is 3. Using this
matrix it is also possible to determine what exactly are the minimum se-
quences of transformations required to transform one string into another,
but this problem wont be considered here.

2.3 Basic Algorithm for Approximate String Matching

Now suppose that we change the boundary condition for the dynamic pro-
gramming matrix of the previous algorithm to the following: the first row of
the matrix will be initialized with zeroes. That is, C[0, j] = 0, 0 ≤ j ≤ n.

3

By a reasoning similar to the proof of Lemma 1 it is possible to show, that in
this case, C[i, j] contains the minimum of edit distances between s1s2 . . . si

and all possible suffixes of t1t2 . . . tj . That is,

C[i, j] = min
1≤g≤j

(d(s1s2 . . . si, tgtg+1 . . . tj))

For example, here is the corresponding matrix for strings word and ordinaryworld:

0 1 2 3 4 5 6 7 8 910111213
O R D I N A R Y W O R L D

0 |0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 W|1 1 1 1 1 1 1 1 1 0 1 1 1 1
2 O|2 1 2 2 2 2 2 2 2 1 0 1 2 2
3 R|3 2 1 2 3 3 3 2 3 2 1 0 1 2
4 D|4 3 2 1 2 3 4 3 4 3 2 1 1 1

Examining the last row of the matrix we may, for example, tell, that some
substrings of ordinaryworld that end at positions 3, 11, 12 and 13, are
only 1 transformation away from the string word. That is, we have found a
way to determine all the locations in the first string (ordinaryworld) where
some substring ends, that is k transformations away from the second string
(word). This is exactly the solution to the approximate matching problem
raised above. Moreover, knowing the whole matrix it is possible to determine
not only the locations in the text, but the substrings themselves, that match
the word being searched (in the above example these substrings are ord,
wor, worl and world). Therefore we have a O(mn) time and O(mn) space
algorithm to find all substrings in text, that match the pattern with at most
k differences. A simple observation shows, that it is not necessary to store
the whole matrix in memory, because in order to calculate the next column
of the matrix it suffices to know only the previous column. By keeping in
memory only that column we obtain an O(m) space algorithm. Truth is,
in this case the algorithm would report primarily the locations in the text
and we lose a simple way to find the substrings of the text that match the
pattern. However, this limitation can be overcome in several ways. For
example, storing m + k columns of the matrix helps. Another interesting
idea uses the fact, that by searching in forward direction we obtain all the
locations, where matching substrings end, then by searching in the reverse
direction we can determine the locations, where the matching substrings
begin. Anyway, the problem of finding the locations only is considered in
this article.

2.4 Summary

Given text t1t2 . . . tn, pattern p1p2 . . . pm, and threshold k, the following
algorithm reports all the locations j in the text, where for some substring

4

tgtg+1 . . . tj the edit distance d(p1p2 . . . pm, tg, tg+1 . . . tj) is less than or equal
to k:

approx_basic(text[1..n], pattern[1..m], int k)
{
int c1[0..m], c2[0..m];
int *prev_column = c1, *cur_column = c2;

// Initialize prev_column
for (i = 0..m)

prev_column[i] = i;

cur_column[0] = 0;

// Recalculate the matrix column under each text symbol
for (j = 1..n)
{

for (i = 1..m)
cur_column[i] = min(prev_column[i] + 1,

prev_column[i - 1] +
(text[j] == pattern[i]?0:1),

cur_column [i - 1] + 1);
if (cur_column[m] <= k)
report match at position j

swap(cur_column, prev_column);
}

}

3 Fast Bit-Parallel Computation of the D. P. Ma-
trix

3.1 Introduction

The technique of bit-parallelism is common in string-matching algorithms.
The idea is to exploit the fact, that computers perform their operations on
words of several bits. Usually there are 32 or 64 bits in a single computer
word, that is, 32 or 64 bit-operations can be performed simultaneously by the
computer hardware. Therefore by parallelizing algorithms cleverly, we may
achieve a considerable speedup factor of 32 or 64. Two different approaches
will be considered here. The first is a bit-parallel version of the algorithm
presented above. Assuming that the length of the pattern is no more than
the size of the computer word (which will be further denoted by w), it
computes the whole column of the dynamic programming matrix in a single

5

step. The second approach, described in the next section, also assumes that
the length of the pattern is shorter than w, and utilizes this by emulating a
non-deterministic automaton using bit-parallelism. Both algorithms can be
easily adapted to patterns longer than w, but that case is omitted here for
sake of simplicity.

3.2 The Algorithm

A very clever algorithm by Gene Myers [2] performs the calculation of the
next column of the dynamic programming matrix in an O(1) time and O(1)
space, assuming that the length of the pattern does not exceed w. A very
good explanation of it is given in the original article. Here I’ll just try to
give the basic idea.

So, suppose that the length of the pattern is not longer than w. Consider
the dynamic programming matrix:

0 1 2 3 4 5 6 7 8 9
R E M A C H I N E

+-------------------
0 |0 0 0 0 0 0 0 0 0 0

|
1 M|1 1 1 0 1 1 1 1 1 1

|
2 A|2 2 2 1 0 1 2 2 2 2

|
3 T|3 3 3 2 1 1 2 3 3 3

|
4 C|4 4 4 3 2 1 2 3 4 4

|
5 H|5 5 5 4 3 2 1 2 3 4

Note that the differences between the neighbor elements of the matrix are
not greater than 1. These differences will be denoted here as “vertical deltas”
(∆v[i, j] = C[i, j]− C[i− 1, j]) and “horizontal deltas” (∆h[i, j] = C[i, j]−
C[i, j − 1]). A single column of the matrix can be stored as a sequence of
vertical deltas. As it is really true, that all deltas are always either −1, 0 or
1, then 2 bits suffices to store one vertical delta. The whole column j can
be stored therfore in two bit vectors Pvj and Mvj , such that

Pvj [i] = 1 ⇔ ∆v[i, j] = +1
Mvj [i] = 1 ⇔ ∆v[i, j] = −1

And the problem is to calculate Pvj+1 and Mvj+1 knowing Pvj and Mvj .
Consider a square of 4 adjacent matrix entries: C[i, j], C[i−1, j], C[i, j−

1] and C[i− 1, j − 1]. Such a square will be further referenced as cell (i, j):

6

0 1 2 3 4 5 6 7 8 9
R E M A C H I N E

+-------------------
0 |0 0 0 0 0 0 0 0 0 0

| +---+
1 M|1 1 1 0|1 1|1 1 1 1

| | |
2 A|2 2 2 1|0 1|2 2 2 2

| +---+
3 T|3 3 3 2 1 1 2 3 3 3

|
4 C|4 4 4 3 2 1 2 3 4 4

|
5 H|5 5 5 4 3 2 1 2 3 4

Let’s denote by ∆vin the vertical delta on the left edge of the cell, by
∆vout—the vertical delta on the right edge, by ∆hin—the horizontal delta
on the top edge and by ∆hout—the horizontal delta on the bottom edge.
Also define Eq = δij = (if pi = tj then 1 else 0).

Note that knowing ∆vin, ∆hin and Eq suffices to determine ∆vout

and ∆hout for any cell. Besides, as there are only 3 × 3 × 2 possible values
for (∆vin,∆hin, Eq), then the function (∆vin,∆hin, Eq) → (∆vout,∆hout)
performed by the cell, may be expressed in terms of boolean logic. Namely,
denote the bit values

Pvin = 1 ⇔ ∆vin = +1
Mvin = 1 ⇔ ∆vin = −1

and analogously for Pvout, Mvout, Phout, Mhout, Phin, Mhin. Then the
cell function may be expressed by the following relations:

Xv = Eq or Mvin

Pvout = Mhin or not (Xv or Phin)
Mvout = Phin and Xv

Xh = Eq or Mhin

Phout = Mvin or not (Xh or Pvin)
Mhout = Pvin and Xh

The formulas can be controlled by simply checking the results for all pos-
sible inputs. These formulas provide a way to calculate the output of
a cell using bit operations. Now consider the whole column j of cells
(1, j), (2, j) . . . (m, j):

7

0 1 2 3 4 5 6 7 8 9
R E M A C H I N E

+-------+---+-------
0 |0 0 0 0|0 0|0 0 0 0

| | |
1 M|1 1 1 0|1 1|1 1 1 1

| | |
2 A|2 2 2 1|0 1|2 2 2 2

| | |
3 T|3 3 3 2|1 1|2 3 3 3

| | |
4 C|4 4 4 3|2 1|2 3 4 4

| | |
5 H|5 5 5 4|3 2|1 2 3 4

| +---+

The main goal is to obtain a way to quickly calculate ∆vout of every cell
in the column, knowing ∆vin of each cell, ∆hin of the topmost cell (it is
always 0), and Eq for each cell. This can be done in the following way:

• First, we define a bit-vector Eqj such that Eqj [i] = δij . As we
need to obtain this vector in O(1) time, it will be precomputed be-
fore executing the main algorithm. More specifically, for each let-
ter c of the alphabet, a vector Eq(c) will be precomputed such that
Eq(c)[i] = 1 ⇔ pi = c. Then at any text position j, we shall have
Eqj = Eq(tj). This precomputation will take us O(m) time.1

• Secondly, if (Pvk,Mvk) and (Phk,Mhk) encode the vertical and hor-
izontal deltas in column k (e.g. Phk[i] = 1 ⇔ ∆hij = +1, etc), then,
according to the relations shown above:

Phj [0] = Mhj [0] = 0
Phj [i] = Mvj−1[i] or not (Xhj [i] or Pvj−1[i])
Mhj [i] = Pvj−1[i] and Xhj [i]
Pvj [i] = Mhj [i− 1] or not (Xvj [i] or Phj [i− 1])
Mvj [i] = Phj [i− 1] and Xvj [i]

And the required initial values are:

Pvj [i] = 1
Mvj [i] = 0

1Note that though strictly speaking precomputation requires O(m|Σ|) time (where |Σ|
is the size of the alphabet), I assume that filling a region of memory with similar bytes
by using a function like memset() is done by the hardware in O(1) time. This assumption
is not very far from the truth, and using it, the preprocessing time can be estimated as
O(m).

8

• What remains is to determine the formulas for calculating the “X-
factors” Xhj and Xvj . From their definition we have

Xvj [i] = Eqj [i] or Mvj−1[i]
Xhj [i] = Eqj [i] or Mhj [i− 1]

The tricky part is to unwind the circularly dependent formula for
Xhj [i]:

Xhj [i] =Eqj [i] or Mhj [i− 1] = Eqj [i] or (Pvj−1[i− 1] and Xhj [i− 1])
=Eqj [i] or (Pvj−1[i− 1] and (Eqj [i− 1] or Mhj [i− 2])) =
=Eqj [i] or (Pvj−1[i− 1] and Eqj [i− 1])

or (Pvj−1[i− 1] and Mhj [i− 2]) =
=Eqj [i] or (Pvj−1[i− 1] and Eqj [i− 1])

or (Pvj−1[i− 1] and (Pvj−1[i− 2] and Xhj [i− 2])) =
=Eqj [i] or (Pvj−1[i− 1] and Eqj [i− 1])

or (Pvj−1[i− 1] and
(Pvj−1[i− 2] and (Eqj [i− 2] or Mhj [i− 3])) =

=Eqj [i] or (Pvj−1[i− 1] and Eqj [i− 1])
or (Pvj−1[i− 1] and Pvj−1[i− 2] and Eqj [i− 2])
or (Pvj−1[i− 1] and Pvj−1[i− 2] and Mhj [i− 3]) =

= · · · =
=∃k ≤ i : Eqj [k] & ∀x ∈ [k, i− 1] Pvj−1[x]

In order to calculate Xhj [i] in a single bit-parallel operation, some kind
of “bit-propagation” should be used, similar to that of carry propaga-
tion when adding binary numbers. In fact, the following formula does
the job:

Xhj = (((Eqj and Pvj−1) + Pvj−1)xor Pvj−1) or Eqj

where the logical operations are performed on all the elements of the
bit-vectors simultaneously. A detailed proof of this result is available
in the original article [2].

Thus, there is a way to calculate the whole column of the dynamic pro-
gramming matrix in O(1) time using bit-parallelism. In order to check for a
match, however, we need the value of the last element in the column, “the
score”, and due to the encoding of the column using deltas, it would take
O(m) time to sum all the deltas to determine the score, thus ruining all the
benefit of bit-parallel computation. So we do not sum the vertical deltas in
the column, but add the horizontal delta ∆hmj to the previous value of the
score instead. This completes the description of the algorithm.

9

3.3 Summary

The following algorithm solves the approximate string matching problem in
O(m + n) time and O(|Σ|) space (where |Σ| is the size of the alphabet), as-
suming the length of the pattern is not greater than the size of the computer
word w:

approx_myers(text[1..n], pattern[1..m], int k)
{

unsigned long PEq[1..S];

precompute PEq[i]; // This is O(m)

unsigned long Pv = (unsigned long) -1;
unsigned long Mv = 0;
int Score = m;
unsigned long Eq, Xv, Xh, Ph, Mh;

for (j = 1..n)
{
Eq = PEq[text[j]];
Xv = Eq | Mv;
Xh = (((Eq & Pv) + Pv) ^ Pv) | Eq;

Ph = Mv | ~ (Xh | Pv);
Mh = Pv & Xh;

if (Ph & (1 << (m-1)) Score++;
else if (Mh & (1 << (m-1)) Score--;

Ph <<= 1;
Mh <<= 1;

Pv = Mh | ~(Xv | Ph);
Mv = Ph & Xv;

if (Score <= k)
report match at position j

}
}

10

4 The “Shift-Or” Style Approximate String Match-
ing

4.1 Introduction

A totally different approach to using bit-parallelism is exploited in the al-
gorithm by Sun Wu and Udi Manber ([3]). The idea to extend a simple
“Shift-Or” exact string matching algorithm lead to a very powerful approxi-
mate string matching solution, that was implemented in a well-known agrep
package. The algorithm allows numerous extensions, up to matching gen-
eral regular expressions approximately, but again, here only the most basic
version is taken into consideration.

4.2 Shift-Or

This is the case of exact string matching. As before, we are given text
t1t2 . . . tn, pattern p1p2 . . . pm, threshold k, whereas m < w. We define
a bit-vector array R[1..m] and denote by Rj the value of the array after
reading j-th text symbol. The bits in the array are defined by the following
relation:

Rj [i] = 0 ⇔ p1p2 . . . pi matches the suffix of t1t2 . . . tj

The following formulas are easily controlled:

R0[i] = 1 for all i = 1..m

Rj+1[1] = 0 ⇔ p1 = tj

Rj+1[i] = 0 ⇔ Rj [i− 1] = 0 & pi = tj

These formulas allow to calculate the whole bit-array in a single step using
bit-parallelism in the following way:

Rj+1 = (Rj << 1) or Eq[tj]

where Eq[tj] is a bit-vector such that Eq[tj][i] = 0 ⇔ tj = pi. This vector
may be precomputed for each alphabet symbol before executing the main
algorithm (in O(m) time). Then the text will be scanned symbol by symbol,
and the array Rj calculated for every text symbol in O(1) time. If at any
moment Rj [m] = 0, we have a match. This is obviously an O(m + n) time,
O(|Σ|) space algorithm:

shift_or(text[1..n], pattern[1..m])
{
precompute Eq[1..S];
unsigned long R = (unsigned long) -1;
for (j = 1..n)

11

{
R = (R << 1) | Eq[text[j]];
if (~R & (1 << (m-1)))
report match at position j

}
}

Here is an illustration of how the algorithm works with text abababc and
pattern abab:

text: A B A B A B C Eq[A] Eq[B] Eq[C]
+----------------

A| 1 0 1 0 1 0 1 1 0 1 1
R: B| 1 1 0 1 0 1 0 1 1 0 1

A| 1 1 1 0 1 0 1 1 0 1 1
B| 1 1 1 1 0 1 0 1 1 0 1

match: * *

Note that this algorithm may be considered as an emulation of a non-
deterministic automaton for matching the pattern. (Then the zeroes in
the array Rj correspond to active states of the automaton).

4.3 Extension to Approximate Matching

The idea presented above may be easily extended to approximate matching.
For the beginning suppose the problem of finding all matches of the pattern
with at most one difference. Then, in addition to bit vector Rj (which will
now be denoted by R0

j), one more bit vector, R1
j , will be kept, such that

R1
j [i] = 0 ⇔ p1p2 . . . pi matches a suffix of t1t2 . . . tj with at most 1 difference.

The transitions for the new array are the following:

1. R1
j+1[i] = 0, if p1p2 . . . pi matches exactly a suffix of t1t2 . . . tj . Be-

cause then obviously p1p2 . . . pi matches a suffix of t1t2 . . . tj+1 with
one insertion.

2. R1
j+1[i] = 0, if p1p2 . . . pi−1 exactly matches a suffix of t1t2 . . . tj+1.

This case corresponds to a match with one deletion (where pi was
deleted).

3. R1
j+1[i] = 0, if p1p2 . . . pi−1 exacly matches a suffix of t1t2 . . . tjṪhen

p1p2 . . . pi matches at position j + 1 with at most one substitution.

4. R1
j+1[i] = 0, if pi = tj+1 and p1p2 . . . pi matches a suffix of t1t2 . . . tj

with at most one difference.

12

It is possible to show that these cases are exhaustive. Moreover, they allow
to exploit bit-parallelism in transition for the whole array. Here is a complete
rule to calculate R1

j for all j:

R1
0 =1 . . . 110 = (−1) << 1

R1
j+1 =R0

j and

(R0
j+1 << 1) and

(R0
j << 1) and

(Eq[tj+1] or (R1
j << 1))

The more general case of finding all approximate matches of at most k
differences is handled similarly, only this time we keep track of k +1 arrays:
R0

j , R
1
j , . . . R

k
j such that

Rd
j [i] = 0 ⇔ p1p2 . . . pi matches a suffix of t1t2 . . . tj with at most d differences.

The transition rules for these k arrays can be derived by exactly the
same reasoning as in the case of the array R1

j . And the formula is basically
the same, namely:

Rd
0 =1 . . . 110 . . . (d times) . . . 0 = (−1) << d

Rd
j+1 =Rd−1

j and

(Rd−1
j+1 << 1) and

(Rd−1
j << 1) and

(Eq[tj+1] or (Rd
j << 1))

Thus the following O(m + nk) time and O(|Σ| + k) space algorithm is
obtained: the text is scanned character-by-character and for every character
all the k+1 arrays are recalculated. If at some text position j it is true that
Rk

j [m] = 0, then an approximate match is reported.

4.4 Summary

This is the complete algorithm implementation:

approx_wu_manber(text[1..n], pattern[1..m], int k)
{

precompute Eq[1..S];
unsigned long R1[0..k], R2[0..k];
unsigned long *Rprev = R1; *Rnew = R2;
for (d = 0..k) Rprev[d] = (unsigned long)(-1) << d;

for (j = 1..n)

13

{
Rnew[0] = (Rprev[0] << 1) | Eq[text[j]];

for(d = 1..k)
{
Rnew[d] = Rprev[d-1] & (Rnew[d-1] << 1) &

(Rprev[d-1] << 1) & ((Rprev[d] << 1) | Eq[text[j]]);
}

if (~Rnew[k] & (1 << (m-1)))
report approximate match at position j

swap(Rprev, Rnew);
}

}

5 Comparison

A very rough comparison of the described algorithms is presented here. The
goal is rather to demonstrate the speedup factor approximately, than to
perform a comprehensive analysis of the algorithms speed in practice. The
algorithm implementations used for the comparison are those of my own
and they lack any of the possible optimizations. Three different files were
used for testing:

• words.dat, 2.0 M — a list of english words.

• dna.dat, 2.0 M — a file with DNA sequence data.

• random.dat 2.0 M — a file with random character data.

The point of interest was to check the speed of the algorithms when applied
to different file types searching for patterns of different lengths with different
thresholds. The following simple ideas were ascertained by the tests:

1. Basically, the speed of the algorithms does not depend on the file
type. True it is, that searching for the same pattern in different files
would take a slightly different time, but this difference in speed is well
correlated with the number of reported matches, therefore it is most
probably not related to the algorithms themselves.

2. The characters used in the pattern and the length of the pattern do
not matter for the bit-vector algorithms (however, analogously to the
previous case, the choice of the pattern affects the number of reported
matches, which in turn affect the running time slightly).

14

3. The choice of threshold does not affect the speed of the Myers’ algo-
rithm.

4. The time of execution of the algorithms is strictly directly proportional
to the size of the input file (parts of the input files named above were
used to test this).

These facts allow to present a sufficiently consistent and fair summary of
the tests that considers only one file of a fixed size (2.0 M) and that does
not focus on the exact values of the pattern used in searching.

The tests were performed on an Intel Celeron 800 Mhz processor with
128M RAM and 16 + 128 K cache. Algorithms were implemented in C and
were compiled by gcc with maximum compiler optimizations turned on.

5.1 The Basic Algorithm

Here are the average running times of the basic dynamic programming al-
gorithm. The numbers represent the time in seconds needed to perform
a certain search 10 times. Two measurements are given for each pattern
length—the least time (attained when the pattern consisted only of symbols
not present in the text) and the “worst” time (attained when the symbols
of the pattern were commonly present in the text). The value of threshold
is not mentioned, because it does not affect the running time much.

Pattern length Running time
1 1.1–1.5
3 2.5–3.8
5 3.85–5.25
7 4.7–7.2
10 8.0–9.5
15 11.3–13.2
20 15.0–16.9
32 23.0–25.0

5.2 The Myers’ Algorithm

The running time of this algorithm is nearly independent of both the thresh-
old and the pattern length. The main factor that affected the running time
was the number of matches reported—the fastest running time was attained
when no match for a pattern could be found, and the longest running time
was attained when every byte in the file was a match.

Running time
0.8–1.1

15

5.3 The Algorithm of Wu & Manber

Running times of this algorithm depend on the value of threshold k. They
are presented in the following table.

Threshold Avg. running time
1 0.8
3 1.4
5 1.8
7 2.8
10 3.7
15 4.95
20 6.5
32 9.7

5.4 Conclusions

The speed comparison shows the superiority of the Myers’ algorithm, the
running time of which does not depend neither on the pattern length nor on
the threshold. The “Shift-Or” algorithm is also rather fast, which makes it a
decent rival, especially considering the fact that it is extensible to matching
regular expressions. And on the whole, even though the data presented in
this section is very rough, it is possible to see that bit-parallelism does give
substantial speedup (up to 32 times, which is seen from the test results:
note that 25/0.8 ≈ 32). And that is probably the main and the sole point
of this whole article.

References

[1] Navarro, G. 2001. A Guided Tour to Approximate String Matching.
ACM Comp. Surveys 33, 1, 31–88.

[2] Myers, G. 1997. A Fast Bit-Vector Algorithm for Approximate String
Matching Based on Dynamic Programming. J. ACM 46, 395–415.

[3] Wu, S., and Manber, U. 1992. Fast Text Searching Allowing Errors.
Commun. ACM 35, 10, 83–91.

16

