
Control of a Ball on a Tilted Rail

Using Neural Networks
Project for the course MTAT.03.241 Modelling and Control of

Dynamic Systems

Konstantin Tretyakov, Darya Krushevskaya
University of Tartu

January 28, 2009

Contents

Introduction 2

1 System Construction 2
1.1 Conceptual Model . 2
1.2 LEGO-based Implementation . 2
1.3 Observing the Output . 3
1.4 Limitations and Complications 4

2 System Identification 5
2.1 Data Aquisition . 5
2.2 Model Order Selection . 5
2.3 Training a Linear Model . 8
2.4 Training a Neural Network . 8

3 System Control 12
3.1 PID Controller . 12
3.2 Direct Inverse Control and Optimal Control 12
3.3 Feedback Linearization . 13
3.4 Nonlinear Predictive Control . 13
3.5 Conclusion . 15

4 Controlling the Real System 16

Conclusion 16

1

Introduction

The aim of the project is to study in practice the methods for modelling and
control of dynamic systems based on neural networks. We apply the methods to
a toy real-life example: controlling the position of a ball on a rail by tilting the
rail. The project consists of four main stages – construction of the system, iden-
tification of a neural network-based model of the system, creating a controller
based on the model, and finally, applying the controller to the real system. The
description of each stage is presented in the following sections.

1 System Construction

1.1 Conceptual Model

Figure 1: The “Ball on a Rail”
system.

The system that consists of a ball on a tilted
rail (Figure 1) was chosen as the focus of the
project mainly for its conceptual simplicity.
The system only requires one input for con-
trolling the tilt of the rail, and has one out-
put – the position of the ball. The system is
simple to construct yet quite complicated to
control. It is not linear due to friction and the
limited lenth of the rail. It is also highly un-
stable. We therefore consider a modest goal
of creating a controller that would be capable of positioning the ball in the
middle of the rail.

1.2 LEGO-based Implementation

We used a LEGO Mindstorms NXTTM kit to construct the system (Figure 2).

Figure 2: The system constructed from LEGO blocks.

2

The tilt of the rail is controlled using a motor that is connected to the rail
via a set of gears. The NXT servo-motor can be controlled using two types
of commands – setMotorPosition and setMotorSpeed. The former requests
the motor to rotate to a prespecified absolute angle (measured in “ticks”). The
latter requests the motor to rotate with a speed of a given number of “ticks”
per second. Experiments showed that the former way is unreliable and prone
to serious lags. When requested to rotate to a given angle the motor often
“overshoots” due to inertia and then takes time to correct the position, rotating
back and forth by single ticks. This seriously hinders the control of the rail.
The second method of controlling the motor, by setting its rotation speed, is
somewhat more reliable and therefore we selected that method for our imple-
mentation. Unfortunately, however, setting the motor rotation speed influences
the actual tilt of the rail in an indirect manner, which complicates the control
task further on.

The motor can be controlled by a program running on the NXT “intelli-
gent brick” or, more conveniently, by a program running on a PC and sending
commands to the NXT brick via USB or Bluetooth. The technical details of
this configuration, turned out to be somewhat more complicated than we could
expect, hence we provide a brief review.

Preliminary tests indicated that the most reliable way of controlling the
NXT brick from PC via Bluetooth is provided by the iCommand Java library,
that comes with the leJOS NXJ toolkit. We therefore installed the leJOS
NXJ firmware on the brick (which was probably an optional step, because
iCommand is presumably capable of controlling the original LEGO firmware,
too) and created a Java proxy, providing the setMotorSpeed function. For
various convenience reasons we had to implement the remaining code in Python
and thus interfaced it to the Java-based proxy using TCP/IP. Thus, the input
to the system was provided in a way illustrated in Figure 3.

Figure 3: The input signal pipeline.

1.3 Observing the Output

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97
0
5

10
15
20
25
30
35
40
45

Figure 4: Observed
values corresponding to
the ball’s leftmost posi-
tion.

Clearly, the system cannot be controlled in an open-
loop manner, hence we need a way to observe the
location of the ball. To detect the location of the ball
we used a usual laptop webcam. The position of the
ball was recognized from the image using an ad-hoc
algorithm, by computing the average location of red
pixels. The obtained number was then normalized so
that 1 would correspond to one edge of the rail and

3

−1 – to the other edge. The VideoCapture and
PyGame Python modules were used to implement
this part. Although both the idea and implementa-
tion were rather crude, the average measurement error was generally less than
0.05, which seemed tolerable (see Figure 4).

1.4 Limitations and Complications

The constructed system is anything but a fine instrument. It contains numerous
rough spots, which produce considerable noise. Firstly, the NXT motor does not
respond to requests instantaneously and thus the timing of the response to input
signals varies. In our implementation, we could achieve the sampling rate for
input and output somewhere between 10Hz and 11Hz (see Figure 5). Secondly,

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sampling rate (Hz)

Figure 5: Variability of the sampling rate over a session.

the system contains some inertia and the gears are not ideally tight. Thirdly,
the rail is not ideally smooth and the ball is not ideally round. Fourthly, the
webcam and the whole system were repositioned between experiments. Finally,
the changing lighting conditions influence the ball recognition algorithm. All
this introduces considerable noise both in the input and output signals.

It is easy to see that the system is nonlinear, because both the input and
the output are strictly bounded. Besides, once the ball hits a bound and stops,
the tilt of the rail must be changed much more to make it move again, than
when the ball is still moving. Another complication is that the system has a
potentially infinite lag-space, because once the ball is at one of the bounds, it is
possible to play with the motor and change the tilt of the rail without affecting
the position of the ball. As a result, as long as we observe the ball at one of
the bounds, there is no way to derive the actual tilt of the rail and thus guess
the proper control input. All that makes the system quite difficult to control.
In fact, when a joystick was attached to control the system, the author himself
failed to balance the ball in the middle of the rail no matter how hard he tried

4

except for once, which was due to sheer luck.

2 System Identification

2.1 Data Aquisition

In order to create a model for the system we collected a dataset of input/output
values by “playing” with the system. For that we attempted two methods.
At first, we implemented a PID-controller and let it control the system while
tuning its Kp, Ki and Kd parameters interactively. We found this method
of data aquisition to be suboptimal due to the following reason. We did not
find any parameter settings, for which the PID controller would be capable of
holding the ball away from the bounds for a significant amount of time. As
a result, the PID-controlled system was bouncing the ball from one bound to
the other with a somewhat stable periodicity. This periodicity is well visible
from the output autocorrelation function (see Figure 6, bottom right plot). We
therefore considered an alternative data collection strategy, where the system
was controlled manually using a joystick. The data collected this way shows less
periodicity. Also the input signal spectrum coverage is probably slightly more
relevant here (see Figure 7). As a final dataset we used 5000 measurements
collected in a single joystick-controlled session. We split the set into two parts:
3000 points form the training set and 2000 – the test set.

2.2 Model Order Selection

Physical considerations. In order to predict the position of a ball in an
idealized tilted rail system, it should, in theory, be sufficient to know the posi-
tion, velocity and acceleration of the ball and the tilt, speed and acceleration of
the rail. An estimate to the first three values can be inferred from the current
system output y(t) and its outputs one and two sampling instants ago (y(t− 1)
and y(t − 2)). The rotation speed and acceleration of the tilt of the rail can
be estimated from the last two input signal values u(t − 1) and u(t − 2). The
complication lies in the estimation of the current tilt of the rail. When the ball
is moving, the current tilt is proportional to its acceleration, and could thus be
inferred from y(t), y(t−1) and y(t−2). However, when the ball is still, the only
way to determine the tilt reliably is to integrate u(t) back to the moment when
the tilt was known, i.e. when the ball was moving. As there is no fundamental
limit to how long the ball may be still, the lag space for the idealized system is
infinite.

These observations provide useful hints for selecting the model order. Firstly,
it does not make sense to observe many previous outputs y. An idealized system
needs no more than 3. A real system could use a bit more to compensate for
the noise, but presumably not more than 6 or so. The choice of the number
of previous inputs to consider is less obvious. On one hand, when the ball is
still, an unlimited number of previous inputs are required to model the system

5

40 50 60 70 80 90 100 110 120 130 140
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
0.15
0.20
0.25

Input signal (Motor speed)

Time (sec)

40 50 60 70 80 90 100 110 120 130 140
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Output signal (Ball position)

Time (sec)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
5

10

15
20
25
30

35
40

Input signal power spectrum

Frequency (Hz)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Output signal autocorrelation

Delay (sec)

Figure 6: Data collected using a PID-controlled session.

30 40 50 60 70 80 90 100 110 120 130 140
-0.4

-0.3
-0.2

-0.1
0.0
0.1

0.2
0.3

0.4
Input signal (Motor speed)

Time (sec)

30 40 50 60 70 80 90 100 110 120 130 140
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Output signal (Ball position)

Time (sec)

0 5 10 15 20 25 30 35 40 45 50
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Output signal autocorrelation

Delay (sec)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0
5

10
15
20
25
30
35
40
45
50

Input signal power spectrum

Frequency (Hz)

Figure 7: Data collected using a joystick-controlled session.

6

correctly. However, once the ball has begun moving, only two previous inputs
need to be known. Thus, a model that uses just two previous inputs will be
inferior to the model that uses an unlimited number of previous inputs only at
those moments, when the ball starts moving. If in practice the ball does not get
still for too long, it seems most reasonable to select the input order somewhere
inbetween 2 and the average expected time for the ball to stand still (say, 20),
with a strong preference towards smaller values.

4567891011121314151617181920

3 4 5 6 7 8

10
0.63

10
0.66

10
0.69

10
0.72

10
0.75

Number of past inputs

Order index vs. lag space

Number of past outputs

O
rd

er
 in

de
x

Figure 8: Input-output order
indices.

Lipschitz coefficients. The NNSYSID
toolbox provides an obscure method lipschit
for model order selection, that uses Lipschitz
coefficients and black magic. The method
works by computing a certain coefficient (or-
der index) for each pair of input and output
orders. The pairs that correspond to smaller
numbers should generally be preferred. Fig-
ure 8 demonstrates the order indices for input
orders ranging from 4 to 20 and output orders
ranging from 3 to 8. Judging from the picture,
output order of about 5 could be well appro-
priate. As for the input order, it should be
selected at either 7 or 12.

Figure 9: ARX-based model order se-
lection.

Linear model check. An under-
standing of the lag order can be ob-
tained by fitting simple linear ARX
models of various orders and exam-
ining their performance. We use the
Matlab’s arxstruc routine to esti-
mate a range of ARX models corre-
sponding to input orders 1 . . . 20 and
output orders 1 . . . 8. We then use
the selstruct function to select the
optimal structure according to either
the lowest validation error, or ac-
cording to the MDL or AIC criteria.
Figure 8 demonstrates that the ob-
tained results agree with the Lipschitz
test: the suggested output order is 5
or 6 and the input order somewhere
around 10 (or 1, but with a 10-step-delay).

Conclusion. Considering all of the above, we conclude that the output order
of the modeled system should be chosen at either 5 or 6. The input order is one
of 7, 8, 11, 12.

7

2.3 Training a Linear Model

In the previous section we have already got a taste of the ARX model perfor-
mance (see Figure 8). The plot clearly illustrates that, despite the nonlinearity,
the system can be modeled linearly to some extent, at least for the purpose of
one-step-ahead predictions. Also, the choice of the model order does not matter
very much. It is important to note, however, that the performance indicators
employed are rather misleading. Indeed, in terms of one-step-ahead predictions,
the ARX(1, 0) model (i.e., a model that does not use the information about the
input signal) is also quite good simply because the dynamics of the system is
comparably slow and by only predicting the previous output it is possible to
achieve 90% fit. Figure 10 provides a more realistic outlook on the performance
of ARX models by demonstrating the 10 and 20-step-ahead predictions for an
ARX(6, 11) model.

65 70 75 80

−2

−1

0

1

Ball Position. (10−step pred)

y 1

Measured
m1; fit: 40.44%

(a) 10-step prediction

65 70 75 80

−1.5

−1

−0.5

0

0.5

1

Ball Position. (20−step pred)
y 1

Measured
m1; fit: 10.42%

(b) 20-step prediction

Figure 10: Predictions of an ARX model

Seeking to improve the linear model performance, we also experimented with
Matlab’s oe and armax procedures.

ARMAX. When we add one moving average term to an ARX(6, 11) model
(i.e., consider the ARMAX(6, 11, 1) model), the 10-step prediction fit (evalu-
ated on the whole validation set) increases from 48.8% to 52% and the 20-step
prediction fit – from 18% to 26%. Adding further moving-average terms seems
to have no visible effect.

OE. The output error model structure did not seem to produce any remarkable
results. This is probably obvious, as the OE structure is just a special case of
the ARMAX structure.

2.4 Training a Neural Network

Architecture selection. We first aim to find a NNARX or a NNARMAX
model structure that is capable of performing 10-step ahead predictions signif-
icantly better than the ARMAX model from the previous section (which had
52% fit). We start from NNARX(6, 11) and NNARMAX(6, 11, 1) architectures
with one hidden-layer tanh neuron, and add neurons one-by-one evaluating the

8

ten-step prediction quality (fit). The results are demonstrated in Figure 11 (a).
Examination of the plot suggests a NNARX model with 6 hidden neurons or a
NNARMAX1 model with 4 neurons, of which the former is preferable because
it is feedback-free. We then repeat the experiment for the NNARX(5, 7) and
NNARMAX(5, 7, 1) architectures, the corresponding plot is shown in Figure 11
(b). As the accuracy of the smaller model is slightly worse, we decide to stay
with the larger model and use pruning techniques to reduce the parameter space.

2 4 6 8 10
0

10

20

30

40

50

60

70

Number of Hidden Neurons

F
it

(in
 %

)

NNARX
NNARMAX1
NNARMAX2

(a) na = 6, nb = 11

2 4 6 8 10
0

10

20

30

40

50

60

70

Number of Hidden Neurons

F
it

(in
 %

)

NNARX
NNARMAX1
NNARMAX2

(b) na = 5, nb = 7

Figure 11: Fit quality versus number of hidden neurons.

0 1e−4 1e−3 0.01 0.1 1 10 100
0

10

20

30

40

50

60

70

Weight decay

F
it

(in
 %

)

Figure 12: Fit quality versus
number of hidden neurons.

Weight decay parameter. An important
side issue is the choice of the weight decay
parameter α. In the previous experiments
we used α = 10−4 but it could be subopti-
mal. Figure 12 demonstrates that the valida-
tion fits for networks trained with various val-
ues of α do not differ significantly as long as
α ≤ 0.01. We thus continue using α = 10−4.

Network pruning. Recall that we have fo-
cused on a NNARX(6, 11) model. The per-
formance of this model was suspiciosly close
to the performance of a smaller NNARX(5, 7)
model. It follows that the model could benefit from a reduction in the parameter
space by pruning. The pruning session implemented in the nnprune method of
the NNSYSID package eliminates weights one-by-one, retraining the network
on each step. Figure 13 (a) illustrates the output of the session by plotting the
model error versus number of nonzero parameters. Note that the plot somewhat
resembles Figure 9 – the model error is more-or-less constant for all parameter
counts greater than 28 or so.

9

0 20 40 60 80 100
1

2

3

4

5

6

7
x 10

−3 x = training error, + = FPE, o = test error

Parameters

(a) Model error vs number
of parameters.

5 10 15 20 25 30

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x 10
−3 x = training error, + = FPE, o = test error

Parameters

(b) Zoom of (a)

Pruned network with 28 parameters

y(t−1)
y(t−2)
y(t−3)
y(t−4)
y(t−5)
y(t−6)
u(t)
u(t−1)
u(t−2)
u(t−3)
u(t−4)
u(t−5)
u(t−6)
u(t−7)
u(t−8)
u(t−9)
u(t−10)

yhat(t)

(c) Final network

Figure 13: Network pruning.

Network validation. Let us examine the obtained model in more detail. The
10-step-ahead predictions (see Figure 14) have become somewhat more reliable
(with a fit increased to 58%), yet the 20-step-ahead predictions are still useless,
which is probably due to inherent system properties and thus tolerable. The
auto- and cross-correlation plots (Figure 15) demonstrate that the model is not
completely perfect – the cross-correlation of input u(t) and the prediction error
is slightly outside of the “safe” bounds (which correspond to a 95% confidence
interval around 0). However, considering that the cross-correlation between
prediction error and u(t) only becomes large at lags greater than the ones we
deem important and also remembering that the input u(t) was in fact pruned
away as irrelevant, we conclude that the found model is nonetheless more-or-less
the best that we could derive. As a final test we ran the model on a second test
dataset, that was not used before at all – the dataset of 2000 points collected
in a PID-controlled session. The results were better than those on the original
test set: 62.7% fit and a somewhat milder cross-correlation misfit.

System controllability. By examining the pruned network it is easy to note
that most of the edges connecting to inputs u have been pruned away. It is
therefore of interest, whether the knowledge of the input signal plays any signif-
icant role in predicting the output at all, or is it rather the case that the system
output can be predicted from previous outputs alone. The latter would indicate
that the system is completely impossible to control. To test that we trained a
NNARX(6, 0) model with 6 hidden neurons as before. The fit of the resulting
model was around 44% which is, fortunately, somewhat smaller than the 58%
achievable by the network that “knows” the output. This provides some weak
hope, that the system could be controllable to some extent.

10

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (samples)

Output (solid) and 10−step ahead prediction (dashed)

(a) 10-step prediction

20 40 60 80 100 120 140 160 180 200 220
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (samples)

Output (solid) and 20−step ahead prediction (dashed)

(b) 20-step prediction

Figure 14: Predictions of the final NNARX model.

0 5 10 15 20 25
−0.5

0

0.5

1

lag

Auto−correlation function of prediction error

−25 −20 −15 −10 −5 0 5 10 15 20 25

−0.05

0

0.05

lag

Cross−correlation coef. of u1 and prediction error

(a) Training set

0 5 10 15 20 25
−0.5

0

0.5

1

lag

Auto−correlation function of prediction error

−25 −20 −15 −10 −5 0 5 10 15 20 25

−0.1

−0.05

0

0.05

0.1

lag

Cross−correlation coef. of u1 and prediction error

(b) Test set

Figure 15: Auto- and cross-correlation plots for the final NNARX model.

11

3 System Control

3.1 PID Controller

As already noted above, early in the beginning we attempted using a manually-
tuned PID controller to control the actual system. The tuning of the controller
went as follows. It was quite easy to note that the integral term Ki was unnec-
essary. In our system the ball tends to stay at the bounds most of the time and
goes from one bound to the other within instants. With nonzero Ki the system
tends to “charge” too much while the ball is on one side, and this leads to serious
overshoots when the ball moves to the other bound. Next, we noted that large
values of the proportional term Kp make the system act in an unnecessarily
“rapid” manner when the ball was at the bound. This does not correspond to
what we expect from the controller that is capable of keeping the ball off the
bound. Finally, the differential term Kd had to be chosen reasonably large so
that the controller could try to stop the ball immediately once it started moving
away from a bound. By testing various combinations of small Kp and large Kd

interactively, we concluded that a PID controller is incapable of positioning the
ball in the middle.

3.2 Direct Inverse Control and Optimal Control

The next natural candidate control method is direct inverse control, i.e. a
neural network, directly predicting the next control input from previous inputs
and outputs. The task is thus equivalent to the system identification task with
inputs and outputs interchanged. We therefore first of all performed the same
model order selection procedure that we did in Section 2. This time we avoid
excess documentation, though.

We use the same training and test sets as for the identification task. The
Lipschitz coefficients tests suggests using at least 9 previous inputs and 5 pre-
vious outputs for predictions. Somewhat different results are obtained by the
arxstruc linear model selection procedure, which recommends observing 6− 8
previous inputs and 2 previous outputs. It is notable that the best linear model
one-step-prediction misfit is large this time: 6%.

The number of hidden neurons in the network did not seem to matter much,
with a 5-neuron NNARX(9, 5) model looking optimal. Analogously, the exact
value of the weight decay parameter was not too important. After pruning, the
final model achieved 76.5% one-step-ahead prediction fit.

The controller is capable of tracking the amplitude 1 square signal to some
extent (Figure 16), but fails miserably when requested to control amplitude 0.5
square wave or even a simple constant 0.2 level (which would correspond to
keeping the ball somewhere in the middle). The use of “specialized training”
procedures, that optimize the error in the resulting output rather than the
error in the input prediction, and that are provided by the special1, special2
and special3 modules of the NNCTRL package, did not generally improve
the situation (Figure 17). Moreover, the training would not converge on most

12

0 100 200 300 400 500 600 700 800 900
−1

0

1

2

Samples

Direct inverse control

ref

d
ata

y
d
ata

0 100 200 300 400 500 600 700 800 900
−0.4

−0.2

0

0.2

0.4

Samples

u

d
ata

(a) Square signal

0 100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

1.5

Samples

Direct inverse control

ref

d
ata

y
d
ata

0 100 200 300 400 500 600 700 800 900
−0.1

0

0.1

0.2

0.3

Samples

u

d
ata

(b) Small square signal

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Samples

Direct inverse control

ref

d
ata

y
d
ata

0 100 200 300 400 500 600 700 800 900
−0.05

0

0.05

0.1

0.15

Samples

u

d
ata

(c) Constant signal

Figure 16: Direct inverse control.

attempts independently of the chosen algorithm.
A variation of the “specialized” direct inverse control is the so-called “op-

timal control”, where the optimization criterion consists of both the sum of
squared output errors as well as the sum of squared input signal magnitudes,
weighed by a penalty constant ρ. However, when ρ was larger than 10−4 or
so, the results of the corresponding opttrain procedure were worse than that
of the usual direct inverse control (Figure 17). The training algorithm quickly
diverged from the initial approximation (which was taken as the previous direct
inverse controller) and could not settle to a suitable state. Figure 17 illustrates
a sample from a typical training epoch. When ρ was set to a very small value
such as 10−10 optimal training did not result in a controller much different from
the plain direct inverse one.

3.3 Feedback Linearization

As a second attempt we select the feedback linearization strategy. We trained
the f(·) and g(·) networks using the nniol procedure, following the architecture
selected in Section 2, namely NNARX(6, 11) with 6 hidden neurons. For tech-
nical reasons, no pruning was attempted. The resulting forward model seemed
to perform somewhat worse than the one identified in Section 2, but not signif-
icantly (94.82% versus 95.13% one-step-ahead prediction fit).

The control task failed to track both the square wave as well as to keep the
constant level. In addition, the controller was regularly producing input values
significantly exceeding the allowed maximum (Figure 18).

3.4 Nonlinear Predictive Control

In terms of the NNCTRL toolbox, nonlinear predictive control strategy is some-
what similar to the optimal control, but instead of training one network that
would solve the control task for the whole trajectory in terms of one-step-ahead
predictions, a separate optimization is performed at each step of the control
trajectory. At each time point a control input is chosen such that if it were held
for the next k samples, the system output would best match the reference.

13

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

Samples

Specialized Training (J = 153.9244, epoch = 24)

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1

Samples

(a) Square signal

0 20 40 60 80 100 120 140 160 180
−2

−1

0

1

2

Samples

Specialized Training (J = 51.5837, epoch = 10)

0 20 40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

1

Samples

(b) Constant signal

Figure 17: Specialized and optimal control (ρ = 0.001).

0 100 200 300 400 500 600 700 800 900
−1

−0.5

0

0.5

1

Samples

Control by feedback linearization

ref

d
ata

y
d
ata

ym
d
ata

0 100 200 300 400 500 600 700 800 900
−1

−0.5

0

0.5

1

Samples

u

d
ata

(a) Square signal

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Samples

Control by feedback linearization

ref

d
ata

y
d
ata

ym
d
ata

0 100 200 300 400 500 600 700 800 900
−0.5

0

0.5

1

Samples

u

d
ata

(b) Constant signal

Figure 18: Control by feedback linearization.

0 50 100 150 200 250
−1

0

1

2

Samples

Nonlinear Predictive Control

ref

d
ata

y
d
ata

yhat
d
ata

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Samples

u

d
ata

(a) Square signal

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Samples

Nonlinear Predictive Control

ref

d
ata

y
d
ata

yhat
d
ata

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

Samples

u

d
ata

(b) Small square signal

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

Samples

Nonlinear Predictive Control

ref

d
ata

y
d
ata

yhat
d
ata

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

Samples

u

d
ata

(c) Constant signal

Figure 19: Nonlinear predictive control (ρ = 0.5, N2 = 20).

14

This is certainly a reasonable strategy for the system under consideration.
When using a joystick to control the system it becomes clear rather quickly that
the only way to at least somewhat control the system is to “plan ahead”. This
logic is confirmed by experiment, which demonstrates that, indeed, predictive
control is at least capable of satisfactorily controlling the NNARX(6, 11) model
of the system from Section 2 (Figure 19, Figure 20). Although it is not a
convincing proof that the original real-life system can be controlled, it is a
significant improvement over the previous controller techniques. The algorithm
requires tuning two parameters: the control input penalty coefficient ρ and the
prediction horizon N2. After some manual fiddling we selected the values of
ρ = 0.5 and N2 = 20 as the best.

0 50 100 150 200 250
−1

0

1

2

Samples

Nonlinear Predictive Control

ref

d
ata

y
d
ata

yhat
d
ata

0 50 100 150 200 250
−1

−0.5

0

0.5

1

Samples

u

d
ata

(a) Sawtooth signal

0 50 100 150 200 250
−1

0

1

2

Samples

Nonlinear Predictive Control

ref

d
ata

y
d
ata

yhat
d
ata

0 50 100 150 200 250
−0.4

−0.2

0

0.2

0.4

Samples

u

d
ata

(b) Sinewave signal

Figure 20: Nonlinear predictive control (ρ = 0.5, N2 = 20).

3.5 Conclusion

To summarize, we have explored a range of neural-network based control tech-
niques, aiming to control the NNARX model of the system, obtained in Section
2. We discovered that all of the nonpredictive control methods failed, with the
best nonpredictive solution being the direct inverse neural network controller.
In comparison with other methods, this controller was trained directly on the
data rather than a model of the system, and this probably was an important
advantage in our case.

In contrary, the predictive controller performed much better, being able to
satisfactorily track various standard reference trajectories. In fact, the per-
formance of the controller was somewhat “too good” due to the fact that on
each step it was selecting the control input carefully tuned to control exactly
the NNARX model it was given. It seems quite improbable that the real sys-
tem could be tracked with such precision by any controller at all. Therefore,
it might turn out that although the controller is good at tracking the neural-
network model of the system, it will still fail in practice. We shall test this in
the next section.

15

4 Controlling the Real System

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y (output)
yhat (predicted output)
u (control)

Figure 21: Control of the real
system.

Finally, we attempted to apply the controller
from the previous section to control the real
system. To interface Matlab with Python
code we used plaintext files (i.e. Python code
would write system observed state into a file,
Matlab code would read that file, use the ob-
tained value to derive control input, and write
the control input into a second file, which
Python would then read to obtain the value,
etc).

Unfortunately, the results are completely
unsatisfactory. In all experiments the con-
troller would bounce the ball back and forth
for some 3-6 seconds and then start spinning
the motor rapidly in one direction (i.e. send
the control signal 1), effectively destroying the system. Figure 21 displays a
typical control session. The reasons for that behaviour are unclear, especially
considering the fact that the predictions of the forward model seem to be rea-
sonably close to the true values.

Conclusion

Although the final result did not satisfy all of our expectations, we do not
consider this as something extraordinarily bad, because the expectations were
clearly inflated. The project, nonetheless, provided exciting experience and
useful observations.

• Although a PID controller was incapable of properly controlling the real
system, it was still far better than all of the nonlinear controllers, because,
at least, it was not destructive. This supports nicely the popular rule of
thumb, that only simple things usually work in real life.

• The model of the system, however, could be best controlled by a nonlinear
predictive controller. This is somewhat of a cheat, though. Because the
model of a system is noise-free, the predictive controller can “tune” its
input to achieve nearly perfect control. When applied to a real and thus
noisy system this strategy can fail, which is what we observed in practice.
“In theory, there is no difference between theory and practice, but in
practice there is.” True.

• Although neural networks were used as a successful means of system iden-
tification, all of the neural-network-driven control methods failed. The
predictive controller is not inherently specific to neural networks, it used
a neural network model simply because we had one to offer.

16

