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1 Decomposition of functions into sinewaves

1.1 Why sinewaves?

Sinewaves are ubiquitous in sound analysis—a sinewave is considered to be the “pure sound
of a given frequency” and it is customary to regard the more complex soundwaves as sums
of sines or cosines. There are at least two good reasons for that:

e Physical/physiological. A sinewave describes the motion of an ideal harmonic oscil-
lator. Most of the music instruments as well as human vocal cords can be regarded as
harmonic oscillators. Also, the basilar membrane in the human ear is, in a sense, de-
composing incoming signal to sinewaves by resonating with different frequency at dif-
ferent points. In short, we generate and perceive sound as a combination of sinewaves.
It is of no surprise then, that the functions f(t) = sin(440 x 27t) + sin(660 x 27t) and
g(t) = sin(440 x 27t) 4+ cos(660 x 27t), despite looking differently, are perceived as
approximately the same sound.

e Mathematical. A sinewave turns out to be the eigensignal of a linear time-invariant
transformation. Linear time-invariant transformations correspond precisely to what
is known as sound filters. Linearity implies that increasing the input of the filter will
only increase the output proportionally (i.e. the filter will work similarly on both
quiet and loud sounds) and time-invariance means the filter does not care when the
sound comes—right now, in a minute, or in an hour—it will be transformed equally.
Finally, the fact that sinewave is an eigensignal simply means that if you input a
sinewave to a linear filter, you’ll always get a (potentially scaled or shifted) sinewave
on the output. This means that if you could represent a given function f as a sum
of sinewaves, application of linear filters would become extremely simple—you’d only
need to rescale the coefficients and shift the phases. This is often expressed by saying
that convolution in the signal space corresponds to product in the Fourier space, we'll
get to that later.

1.2 Decomposition, how’s that?

As it should be clear from the previous, we’ll be dealing with methods of representing a
given function f(t) as a weighted sum of sinewaves. Something like that, for example:

f(t) = 2sin(t) + 3sin(2t) — sin(1.3t) (1)

The concept should be known already from linear algebra, where a vector v € R™ could be
represented in a given basis {b1,bs,...,b,} as a linear combination:

v =a1by + asbs + -+ a,,b,. (2)



Note that a vector can be regarded as a function v : N — R. Conversely, a function can be
imagined as a vector with an infinite number of components. Hence, the analogy between
(1) and (2) is quite strong.

We know from linear algebra that in an n-dimensional vector space there exist different
bases, each consisting of exactly n elements, such that every vector from the space can be
represented as a linear combination of the basis vectors. Moreover, if we introduce the
notion of an inner product (-,-) between vectors, we can always select an orthonormal basis,
which is particularly convenient for representing vectors. If {by,ba,...,b,} is orthonormal,
then for any v € R”, the coefficients of (2) can be found as:

o; = <V, bl> (3)

As you'll see, it’s all very similar for functions, however slightly more complicated. First
of all, the space of functions is infinite dimensional, hence it’s clear that a finite basis won’t
suffice. Therefore we’ll have to select an infinite set of basis functions {b;(¢)};, and attempt
to represent a given function f(t) as a series:

F#) =" aibi(t). (4)
1=0

Alternatively, we might also attempt to select an infinite uncountable set of basis functions
{bw(t)}, and attempt to represent f(¢) as an integral:

(oo}

0= [ atwhi(tdu (5)
w=0

It still remains a question, whether there really exists a reasonable basis that would allow to

represent most useful functions, and, if it exists, how to find the corresponding coefficients.

For a positive example recollect the Taylor series. It holds that any analytic function f(z)

can be represented as a series of the form

n
f(z) = Z anz”,
i=0
which is an example of representation (4) in the set of basis functions {z'};.

2 Fourier series

2.1 The trigonometric basis

Now, let’s select the family of sines and cosines as the basis, ie. {sin(nt),cos(nt)}, and
examine what functions can we represent in it. In particular, we’ll be interested in the
representation of the form:

f(o) = %ao + Z(an cos(nt) + by, sin(nt)). (6)

n=1

The factor % is there just to unify some of the equations which come further on. Equation
(6) represents an (infinite) linear combination of functions 1, sin(nt), cos(nt). As all of the
basis functions are 2m-periodic and smooth, the resulting function must also be periodic and
without “too many” discontinuities—so that we are far from being able to represent any
function. However, we're examining soundwaves, which are periodic and mostly continuous

anyway.



Let us now define the inner product on the space of integrable 27-periodic functions as

27
(f(),9(t) = ; f(t)g(t)de.

It turns out that according to this inner product our chosen set of basis functions is pairwise
orthogonal:

(cos(mt), sin(nt)) = / 7 cos(mt) sin(nt)d = 0
0

o 2 ifm=n=0
(cos(mit), cos(nt)) = / cos(mt)cos(nt)dt =<7 ifm=n>0

0 .
0 otherwise

2m
(sin(mt), sin(nt)) :/ sin(mt) sin(nt)dt =

0

T ifm=n>0
0  otherwise

This means that we’ll be able to use the analogue of the equation (3) to compute the
coefficients. Indeed, assume that f(¢) is of the form (6), and the series converges uniformly.
Then, for m > 0:

27

(@), costmt)) = | 1(2)cosmt)d

27 0
= /0 <;a0 + Z(an cos(nt) + by, cos(nt))) cos(mt)dt

n=1

1 2 2m 2m 2
= §an/ cos(mt)dt + Z <an / cos(nt) cos(mt)dt + bn/ sin(nt) cos(mt)dt>
0 0 0 0
= M. (7)

Thanks to the constant % in front of ag, the equation also holds for m = 0. It follows then

that
2

Gy = %(f(t), cos(mt)) = ; f(t) cos(mt)dt. (8)
Analogously, ,
b = %(f(t)7sin(mt)> = ; f(t) sin(mt)dt. 9)

The functions a,, and b,, defined by equations (8) and (9) are known as the Fourier co-
efficients of f(t). Of course, not every function f(t) can be represented as the series (6),
and of those that can, not every one satisfies the uniform convergence requirement. Luckily
enough, for most “nice” functions the representation (6) exists and the Fourier equations
hold.

It can be shown, that Fourier representation holds for any f(¢), that has a bounded
continuous derivative except at a finite number of points' in [0,27]. The series (6) then
converges to f(t) at each point where f(¢) is continuous. At each point a of discontinuity, the

T -
series converges to w Convergence is always non-uniform near the discontinuity
points—an effect known as the Gibbs phenomenon.

IThere is also a trick, known as Cesdro summation, which allows to recover any Riemann-integrable f(t)
from its Fourier coefficients even if it does not satisfy the above conditions (Fejér’s theorem).



Clearly, the integration need not necessarily be done from 0 to 27, sometimes it’s more
convenient to integrate from —m to 7. Also, the equations can be generalized for a function
of period T rather than 27 by rescaling the argument:

ft) = %ao + Z(an cos(2mnut) + by, sin(2wnut))

n=1
T
U, = 2V/ f(t) cos(2mmut)dt
0

T
b = 21// () sin(2rmut)dt
0

where v = & is the fundamental frequency of f(t).

There are lots of things one can discover about the Fourier series for particular kinds of
functions. For example, the series for odd functions contains sines only, the series for even
functions—only cosines.

Fourier series can have different forms. For example, by using the identity cos(A — B) =
cos(A) cos(B)+sin(A) sin(B) it is possible to rewrite each term a,, cos(nt)+b, sin(nt) in the
form «, cos(nt + ¢, ). However, one of the most convenient forms is the complex exponential

series.

2.2 Complex Fourier series

With the help of the Euler’s equation e = cos(t) + isin(t) we can rewrite (6) as

ft) = Z ane™ (10)

n=—oo

where oy = %ao, and for m > 0, a,,, = %am + %bm, Ay = %am — %bm.

We could also derive the equations for «; by introducing the inner product

27
(1), 9(t) 1/0 F()gt,

T o

and noticing that the basis functions {e"*},, are pairwise orthonormal, hence
1 2

am = 5 ; f(t)e ™t dt. (11)

For the T-periodic function f(t), we just have to rescale the argument:

oo -, 1 T .
— 2min _ —2mim
f(t) = Z Qape Oy = T /O f(t)e dt. (12)

n—=—oo

3 The Fourier transform

3.1 Fourier transform and inverse Fourier transform

The Fourier series representation can only handle periodic functions. Intuitively, one reason
for that is in the fact that a countable set of sinewave-like functions is not “powerful”
enough to represent a non-periodic function. Will taking an uncountable set and employing
the integral representation (5) help? Indeed it will. It turns out that the basis {e*™**}, g



is, in a sense, orthonormal with respect to the inner product (f(t),g(t)) = [~ f(t)g(t)dt,
so analogously to the previous cases we obtain:

£(t) = / T F)eritay, (13)

F(v) = 700 f(t)e 2mvide, (14)

Equation (13) is known as the inverse Fourier transform of F(v), and equation (14) — as
the Fourier transform of f(t).

It is common to illustrate Fourier transform as the limiting form of the complex Fourier
series for a T-periodic function as T tends to infinity. It goes as follows: Let f(¢) be
T-periodic. Then, using (12) we obtain:

o0 ] o0 1 T/2 ) )
f(t): Z ane%rz%t: Z (T/ f(t)e—Qﬂz;';tdt> 627”%75. (15)

—T/2

The equation is the Riemann sum of the kind 3 ¢; r(vy,) Av, where v, = 7, Av = 7 and

T/2 _ _
th,T(V) = (/_T/Q f(t)e—Qmutdt> e2mivt

Therefore, as T tends to infinity, ¢ r(v) tends to ¢; o0 (v), Av tends to 0 and the whole
sum (15) converges, if anywhere, to the Riemann integral:

ft) = [ O:O bt.00(V)dv = [ o; < [ O; f(t)e%“’tdt> ey,

which demonstrates the Fourier transform and the inverse Fourier transform simultane-
ously?.

In order for the Fourier transform to make sense, the function f(#) must satisfy the
same conditions that allowed a periodic function to be expanded in the Fourier series. In
addition, for the integral to have a finite value, the function must be absolutely integrable,
ie. ffooo |f(t)|dt < co. However, the latter requirement can be relaxed with the help of the
apparatus of generalized functions (distributions).

The trigonometric and complex Fourier series and the Fourier transform are of course
tightly related. As a simple example consider a function f(¢), which is nonzero only on the

segment [—2, Z]. Let there exist its Fourier transform F(v). Now let f(t) be a T-periodic

el

function, created by repeating f(¢), and let v, be the complex Fourier coefficients of f (t).
It’s easy to confirm now, by comparing (12) and (14), that

o=t (3)

As the Fourier transform is more general than the trigonometric or the complex series, it is
usually preferred to the latter forms and used much more often in practice.

2Note, that both the linear-algebra-based explanation, as well as the limit-of-the-series one are given here
in a rather frivolous and sketchy manner, omitting a lot of technicalities related to the fact that you need
to make and check several assumptions when switching integrals, sums and limit operators.



3.2 Examples

Box function

. 11
0 otherwise ’
% ) e—?ﬂ'iut % 1
F(v) = / LAY A — = — sin7v = sinc(7v).
~1 —2miv BT
Gaussian
flt)y=e",
Fv) = e
Cosine

627ri1/0t + e—QTriVot

2

f(t) = cos(2mupt) =

o(v—wo)+o(v+w)

F(v)= )

Here 0(t) denotes the Dirac delta function. Albeit not really a function, it can be imagined

as such. Namely,
0, t#0 °
sty=<" 7 , and / d(t)dt =1
oo, t=0 s

More formally, §(¢) is called a distribution and is defined via the linear operator [ f(¢)d(¢)dt,
acting on the space of integrable functions. By definition,

/ff@&&hzﬂw

Although you can meaningfully add distributions and multiply them by other functions,
they only really make sense within an integral. And, for example, you can take the Fourier
transform of the delta function (which is one of the simplest Fourier transforms to take):

Dirac’s delta function
f(t) = 6(t) F(t) = / 6(t)e_27i’/tdt — e—27riy0 -1

Finally, note that the Fourier transform is in general a complez-valued function. The
only reason why it turned out to be real-valued in the examples above is that these were all
even real-valued functions.

It means that in general it’s not enough to plot just one graph to visualize the Fourier
transform. Two separate graphs are required, either for the real and the imaginary compo-
nents, or for the amplitude and the phase of the spectrum. The latter possibility is more
intuitive and is often the preferred one. The phase is sometimes considered as less important
and not shown.



4 Properties of the Fourier transform

Despite the seemingly complicated integration, the procedure of taking Fourier transforms
by hand can often (at least in the textbook examples) be reasonably simple, reminding that

of differentiation, where you don’t really compute the lima,_.q Ag(;) , but rather use the well-
known properties of the derivative to reduce the task to basic cases. Note that differentiation
and Fourier transform are also similar in a sense that both are linear transformations on
the function space. Differentiation is, in fact, also about a “change in the basis”.

There are lots of useful properties of the Fourier transform, here are some of them (we

use the notation f(t) ~ F(v) to show the function and its Fourier transform):

f@)xg(t) ~ F(v)G(v)
f(t) ~2mvF(v)

[ wpa= [~ ey Pan

—0o0 —00

af(t)+g(t) ~aF(v)+ G(v) (16)
F(t) ~ f(~) (17)

1 v
flat) ~ P () (18)
ft —to) ~ e 2™V P () (19)
f(t)e%”-”(’lt ~ F(v—up) (20)
(21)
(22)
(23)

Equation (16) here shows the linearity of the Fourier transform; (17) says that the
Fourier transform of a Fourier transform is the time-inversed original function (indeed, the
equations of the forward and inverse transform are nearly identical). Equation (18) shows
that a shorter signal will have a wider spectrum and vice-versa—a particular instantiation
of the uncertainty principle. Equation (19) states that shifting the signal corresponds to the
rotation of phases of each frequency component and (20) says that modulating the given
signal with a higher-frequency wave shifts the spectrum of the signal upwards. Equation
(21) demonstrates one particularly important property that was noted in the beginning.
Namely, the spectrum of the convolution of two functions

f@*mw:/ff@m&fﬁm (24)

is the product of their spectra. This property provides useful insight into the work of linear
filters and allows to compute the filtering operation effectively. Besides, statisticians need it
to prove the central limit theorem and more. Property (22) provides an exceptionally simple
way of differentiating functions in the frequency domain—a valuable trick if you need to
solve differential equations. Finally, equation (23) is known as the Parseval’s theorem and
it states that the energy of the signal is equal to the energy of the spectrum.

5 The spectrum

As you might have understood by now, the Fourier transform provides a spectral represen-
tation of a signal. It is also customary to speak of regarding the signal in the time domain
or in the frequency domain, the latter corresponding to the Fourier transform of the signal.
The two representations are equivalent as we are just observing the same signal in different
bases, but the spectral representation is closer to the mechanics of sound generation and
perception and thus often more convenient. For example, the timbre of a sound instrument
can be best described by its spectrum.



The values F(v) and F(—v) of the spectrum show the phase and the amount of oscillation
at frequency v in the signal. If the signal is real-valued, then F(v) = F(—v), thus it often
suffices to visualize only the positive part of the spectrum.

6 Windowed Fourier transform

One particular kind of Fourier transform you probably encounter most often is the windowed
Fourier transform (Gabor transform). The idea is simple—when you are given a soundwave
for a long musical composition, you are most often not really interested in the spectrum for
this whole composition, but rather the spectrum of a small fragment of it near time ty. So,
naturally, you “cut out” the fragment of interest and perform the transform. This “cutting
out” is done by multiplying the signal by a windowing function ¥ (t), which is often just a
gaussian. The equation for the transform then looks like:

Flto,v) = /OO F(®)e 2™ Wi (t — tg)dt.

For real-life examples of Gabor transform just look at sheet music or note the jumping
bars in WinAmp.

7 Discrete Fourier transform

Once sound gets into computer, it becomes digitalized. I.e. it’s not a continuous signal
f(t) any more, but rather an N-dimensional vector. Generalization (or simplification?) of
Fourier transform to this discrete case is known as the discrete Fourier transform, and now
it exactly corresponds to a simple basis change we were talking about in equation (2). The
corresponding equations are:

N-1 1 N—-1
F, = I;J fk€727”nk/N fo = N ZO Fn6727r7,nk:/N

This form of Fourier transform satisfies the discrete analogs of all the important properties
of the continuous version. An efficient algorithm exists (Fast Fourier Transform, FFT),
that can compute the forward and inverse transforms in time O(nlogn).

8 Why is all this useful?

Fourier theory has a multitude of uses in mathematics, statistics, data analysis and signal
processing. Detection of periodicity in biological, financial, meteorological time series, solu-
tions of differential equations, image processing and compression, sound synthesis, all kinds
of pattern analysis issues—all that and much more are the areas of application of Fourier
theory.



