Search for the minimum of function by doing steps proportional to
in the direction, opposite to
![[Graphics:Images/index_gr_4.gif]](Images/index_gr_4.gif)
![[Graphics:Images/index_gr_5.gif]](Images/index_gr_5.gif)
![[Graphics:Images/index_gr_6.gif]](Images/index_gr_6.gif)
![[Graphics:Images/index_gr_8.gif]](Images/index_gr_8.gif)
![[Graphics:Images/index_gr_10.gif]](Images/index_gr_10.gif)
![[Graphics:Images/index_gr_12.gif]](Images/index_gr_12.gif)
![[Graphics:Images/index_gr_14.gif]](Images/index_gr_14.gif)
![[Graphics:Images/index_gr_16.gif]](Images/index_gr_16.gif)
![[Graphics:Images/index_gr_19.gif]](Images/index_gr_19.gif)
Here we just use the gradient instead of the derivative
![[Graphics:Images/index_gr_23.gif]](Images/index_gr_23.gif)
![[Graphics:Images/index_gr_24.gif]](Images/index_gr_24.gif)
![[Graphics:Images/index_gr_25.gif]](Images/index_gr_25.gif)
![[Graphics:Images/index_gr_26.gif]](Images/index_gr_26.gif)
![[Graphics:Images/index_gr_29.gif]](Images/index_gr_29.gif)
![[Graphics:Images/index_gr_32.gif]](Images/index_gr_32.gif)
In order to find minimum of , solve the equation
using the approximation:
==>
Therefore. ==>
==>
![[Graphics:Images/index_gr_41.gif]](Images/index_gr_41.gif)
![[Graphics:Images/index_gr_42.gif]](Images/index_gr_42.gif)
![[Graphics:Images/index_gr_43.gif]](Images/index_gr_43.gif)
![[Graphics:Images/index_gr_45.gif]](Images/index_gr_45.gif)
The case is similar to the above, only we use the gradient instead of the derivative, and matrix of second derivatives (kinda "gradient of a gradient") instead of the second derivative.
![[Graphics:Images/index_gr_48.gif]](Images/index_gr_48.gif)
![[Graphics:Images/index_gr_49.gif]](Images/index_gr_49.gif)
![[Graphics:Images/index_gr_50.gif]](Images/index_gr_50.gif)
![[Graphics:Images/index_gr_52.gif]](Images/index_gr_52.gif)
Suppose there is a vector-valued function and we need to minimize the value of
.
Linearizing we get that for each
which in vector form is: where
is the Jacobian matrix of
and
To minimize we solve
using the obtained approximation:
Expressing we get the step of the algorithm:
![[Graphics:Images/index_gr_71.gif]](Images/index_gr_71.gif)
![[Graphics:Images/index_gr_72.gif]](Images/index_gr_72.gif)
![[Graphics:Images/index_gr_73.gif]](Images/index_gr_73.gif)
![[Graphics:Images/index_gr_75.gif]](Images/index_gr_75.gif)
![[Graphics:Images/index_gr_77.gif]](Images/index_gr_77.gif)
![[Graphics:Images/index_gr_79.gif]](Images/index_gr_79.gif)
![[Graphics:Images/index_gr_81.gif]](Images/index_gr_81.gif)
![[Graphics:Images/index_gr_83.gif]](Images/index_gr_83.gif)
![[Graphics:Images/index_gr_84.gif]](Images/index_gr_84.gif)