
Machine Learning Techniques in Spam Filtering

Konstantin Tretyakov, kt@ut.ee
Institute of Computer Science, University of Tartu

Data Mining Problem-oriented Seminar, MTAT.03.177,
May 2004, pp. 60-79.

Abstract

The article gives an overview of some of the most popular machine
learning methods (Bayesian classification, k-NN, ANNs, SVMs) and of
their applicability to the problem of spam-filtering. Brief descriptions
of the algorithms are presented, which are meant to be understandable
by a reader not familiar with them before. A most trivial sample im-
plementation of the named techniques was made by the author, and the
comparison of their performance on the PU1 spam corpus is presented.
Finally, some ideas are given of how to construct a practically useful spam
filter using the discussed techniques. The article is related to the author’s
first attempt of applying the machine-learning techniques in practice, and
may therefore be of interest primarily to those getting aquainted with
machine-learning.

1 Introduction

True loneliness is when you don’t even receive spam.

It is impossible to tell exactly who was the first one to come upon a simple
idea that if you send out an advertisement to millions of people, then at least one
person will react to it no matter what is the proposal. E-mail provides a perfect
way to send these millions of advertisements at no cost for the sender, and this
unfortunate fact is nowadays extensively exploited by several organizations. As
a result, the e-mailboxes of millions of people get cluttered with all this so-called
unsolicited bulk e-mail also known as “spam” or “junk mail”. Being increadibly
cheap to send, spam causes a lot of trouble to the Internet community: large
amounts of spam-traffic between servers cause delays in delivery of legitimate e-
mail, people with dial-up Internet access have to spend bandwidth downloading
junk mail. Sorting out the unwanted messages takes time and introduces a
risk of deleting normal mail by mistake. Finally, there is quite an amount of
pornographic spam that should not be exposed to children.

Many ways of fighting spam have been proposed. There are “social” methods
like legal measures (one example is an anti-spam law introduced in the US
[21]) and plain personal involvement (never respond to spam, never publish
your e-mail address on webpages, never forward chain-letters. . . [22]). There are

60

“technological” ways like blocking spammer’s IP-address, and, at last, there is
e-mail filtering. Unfortunately, no universal and perfect way for eliminating
spam exists yet, so the amount of junk mail keeps increasing. For example,
about 50% of the messages coming to my personal mailbox is spam.

Automatic e-mail filtering seems to be the most effective method for coun-
tering spam at the moment and a tight competition between spammers and
spam-filtering methods is going on: the finer the anti-spam methods get, so do
the tricks of the spammers. Only several years ago most of the spam could be
reliably dealt with by blocking e-mails coming from certain addresses or filtering
out messages with certain subject lines. To overcome this spammers began to
specify random sender addresses and to append random characters to the end of
the message subject. Spam filtering rules adjusted to consider separate words in
messages could deal with that, but then junk mail with specially spelled words
(e.g. B-U-Y N-O-W) or simply with misspelled words (e.g. BUUY NOOW) was
born. To fool the more advanced filters that rely on word frequencies spammers
append a large amount of “usual words” to the end of a message. Besides, there
are spams that contain no text at all (typical are HTML messages with a sin-
gle image that is downloaded from the Internet when the message is opened),
and there are even self-decrypting spams (e.g. an encrypted HTML message
containing Javascript code that decrypts its contents when opened). So, as you
see, it’s a never-ending battle.

There are two general approaches to mail filtering: knowledge engineering
(KE) and machine learning (ML). In the former case, a set of rules is created
according to which messages are categorized as spam or legitimate mail. A
typical rule of this kind could look like “if the Subject of a message contains
the text BUY NOW, then the message is spam”. A set of such rules should
be created either by the user of the filter, or by some other authority (e.g.
the software company that provides a particular rule-based spam-filtering tool).
The major drawback of this method is that the set of rules must be constantly
updated, and maintaining it is not convenient for most users. The rules could,
of course, be updated in a centralized manner by the maintainer of the spam-
filtering tool, and there is even a peer-2-peer knowledgebase solution1, but when
the rules are publicly available, the spammer has the ability to adjust the text
of his message so that it would pass through the filter. Therefore it is better
when spam filtering is customized on a per-user basis.

The machine learning approach does not require specifying any rules explic-
itly. Instead, a set of pre-classified documents (training samples) is needed. A
specific algorithm is then used to “learn” the classification rules from this data.
The subject of machine learning has been widely studied and there are lots of
algorithms suitable for this task.

This article considers some of the most popular machine learning algo-
rithms and their application to the problem of spam filtering. More-or-less
self-contained descriptions of the algorithms are presented and a simple com-
parison of the performance of my implementations of the algorithms is given.
Finally, some ideas of improving the algorithms are shown.

1called NoHawkers.

61

2 Statement of the Problem

Email is not just text; it has structure. Spam filtering is
not just classification, because false positives are so much
worse than false negatives that you should treat them as a
different kind of error. And the source of error is not just
random variation, but a live human spammer working
actively to defeat your filter.

P. Graham. Better Bayesian Filtering.

What we ultimately wish to obtain is a spam filter, that is: a decision
function f , that would tell us whether a given e-mail message m is spam (S)
or legitimate mail (L). If we denote the set of all e-mail messages by M, we
may state that we search for a function f : M → {S, L}. We shall look for
this function by training one of the machine learning algorithms on a set of
pre-classified messages {(m1, c1), (m2, c2), . . . , (mn, cn)}, mi ∈ M, ci ∈ {S, L}.
This is nearly a general statement of the standard machine learning problem.
There are, however, two special aspects in our case: we have to extract features
from text strings and we have some very strict requirements for the precision of
our classifier.

2.1 Extracting Features

The objects we are trying to classify are text messages, i.e. strings. Strings
are, unfortunately, not very convenient objects to handle. Most of the machine
learning algorithms can only classify numerical objects (real numbers or vectors)
or otherwise require some measure of similarity between the objects (a distance
metric or scalar product).

In the first case we have to convert all messages to vectors of numbers (feature
vectors) and then classify these vectors. For example, it is very customary to
take the vector of numbers of occurences of certain words in a message as the
feature vector. When we extract features we usually lose information and it is
clear that the way we define our feature-extractor is crucial for the performance
of the filter. If the features are chosen so that there may exist a spam message
and a legitimate mail with the same feature vector, then no matter how good
our machine learning algorithm is, it will make mistakes. On the other hand, a
wise choice of features will make classification much easier (for example, if we
could choose to use the “ultimate feature” of being spam or not, classification
would become trivial). It is worth noting, that the features we extract need not
all be taken only from the message text and we may actually add information
in the feature extraction process. For example, analyzing the availability of the
internet hosts mentioned in the Return-Path and Received message headers may
provide some useful information. But once again, it is much more important
what features we choose for classification than what classification algorithm
we use. Oddly enough, the question of how to choose “really good” features
seems to have had less attention, and I couldn’t find many papers on this topic
[1]. Most of the time the basic vector of word frequencies or something similar
is used. In this article we shall not focus on feature extraction either. In
the following we shall denote feature vectors with letter x and we use m for
messages.

62

Now let us consider those machine learning algorithms that require distance
metric or scalar product to be defined on the set of messages. There does exist a
suitable metric (edit distance), and there is a nice scalar product defined purely
for strings (see [2]), but the complexity of the calculation of these functions is
a bit too restrictive to use them in practice. So in this work we shall simply
extract the feature vectors and use the distance/scalar product of these vectors.
As we are not going to use sophisticated feature extractors, this is admittedly
a major flaw in the approach.

2.2 Classifier Performance

Our second major problem is that the performance requirements of a spam filter
are different from those of a “usual” classifier. Namely, if a filter misclassifies
junk message as a legitimate one, it is a rather light problem that does not cause
too much trouble for the user. Errors of the other kind—mistakingly classifying
legitimate mail as spam—are, however, completely unacceptable. Really, there
is no much sense in a spam filter, that sometimes filters legitimate mail as
spam, because in this case the user has to review the messages sorted out to the
“spam folder” regularly, and that somehow defeats the whole purpose of spam
filtering. A filter that makes such misclassifications very rarely is not much
better because then the user tends to trust the filter, and most probably does
not review the messages that were filtered out, so if the filter makes a mistake,
an important email may get lost. Unfortunately, in most cases it is impossible to
reliably ensure that a filter will not have these so-called false positives. In most
of the learning algorithms there is a parameter that we may tune to increase
the importance of classifying legitimate mail correctly, but we can’t be too
liberal with it, because if we assign too high importance to legitimate mail, the
algorithm will simply tend to classify all messages as non-spam, thus making
indeed no dangerous decisions, but having no practical value [6].

Some safety measures may compensate for filter mistakes. For example, if a
message is classified as spam, a reply may be sent to the sender of that message
prompting to resend his message to another address or to include some specific
words in the subject [6].2 Another idea is to use a filter to estimate the certainty
that given message is spam and sort the list of messages in the user’s mailbox
in ascending order of this certainty [11].

3 The Algorithms: Theory

This section gives a brief overview of the underlying theory and implementations
of the algorithms we consider. We shall discuss the näıve Bayesian classifier, the
k-NN classifier, the neural network classifier and the support vector machine
classifier.

2Note that this is not an ultimate solution. For example, messages from mailing-lists may
still be lost because we may not send automatic replies to mailing lists.

63

3.1 The Näıve Bayesian Classifier

3.1.1 Bayesian Classification

Suppose that we knew exactly, that the word BUY could never occur in a legiti-
mate message. Then when we saw a message containing this word, we could tell
for sure that it were spam. This simple idea can be generalized using some prob-
ability theory. We have two categories (classes): S (spam) and L (legitimate
mail), and there is a probability distribution of messages (or, more precisely,
the feature vectors we assign to messages) corresponding to each class: P (x | c)
denotes the probability3 of obtaining a message with feature vector x from class
c. Usually we know something about these distributions (as in example above,
we knew that the probability of receiving a message containing the word BUY
from the category L was zero). What we want to know is, given a message
x, what category c “produced” it. That is, we want to know the probability
P (c |x). And this is exactly what we get if we use the Bayes’ rule:

P (c |x) =
P (x | c)P (c)

P (x)
=

P (x | c)P (c)
P (x |S)P (S) + P (x |L)P (L)

where P (x) denotes the a-priori probability of message x and P (c) — the a-
priori probability of class c (i.e. the probability that a random message is from
that class). So if we know the values P (c) and P (x | c) (for C ∈ {S, L}), we
may determine P (c |x), which is already a nice achievement that allows us to
use the following classification rule:

If P (S |x) > P (L |x) (that is, if the a-posteriori probability that x is spam
is greater than the a-posteriory probability that x is non-spam), classify x
as spam, otherwise classify it as legitimate mail.

This is the so-called maximum a-posteriori probability (MAP) rule. Using the
Bayes’ formula we can transform it to the form:

If P (x |S)
P (x |L) > P (L)

P (S) classify x as spam, otherwise classify it as legitimate mail.

It is common to denote the likelihood ratio P (x |S)
P (x |L) as Λ(x) and write the MAP

rule in a compact way:

Λ(x)
S
≷
L

P (L)
P (S)

But let us generalize a bit more. Namely, let L(c1, c2) denote the cost (loss,
risk) of misclassifying an instance of class c1 as belonging to class c2 (and it is
natural to have L(S, S) = L(L,L) = 0 but in a more general setting this may
not always be the case). Then, the expected risk of classifying a given message
x to class c will be:

R(c |x) = L(S, c)P (S |x) + L(L, c)P (L |x)

It is clear that we wish our classifier to have small expected risk for any message,
so it is natural to use the following classification rule:

3To be more formal we should have written something like P (X = x |C = c). We shall,
however, continue to use the shorter notation.

64

If R(S |x) < R(L |x) classify x as spam, otherwise classify it as legitimate
mail.4

This rule is called the Bayes’ classification rule (or Bayesian classifier). It
is easy to show that Bayesian classifier (denote it by f) minimises the overall
expected risk5 (average risk) of the classifier

R(f) =
∫

L(c, f(x)) dP (c,x)

= P (S)
∫

L(S, f(x)) dP (x |S) + P (L)
∫

L(L, f(x)) dP (x |L)

and therefore Bayesian classifier is optimal in this sense [14].
In spam categorization it is natural to set L(S, S) = L(L,L) = 0. We may

then rewrite the final classification rule in the form of a likelihood ratio:

Λ(x)
S
≷
L

λ
P (L)
P (S)

where λ = L(L,S)
L(S,L) is the parameter that specifies how “dangerous” it is to

misclassify legitimate mail as spam. The greater is λ, the less false positives
will the classifier produce.

3.1.2 The Näıve Bayesian Classifier

Now that we have discussed the beautiful theory of the optimal classifier, let
us consider the not-so-simple practical application of the idea. In order to
construct Bayesian classifier for spam detection we must somehow be able to
determine the probabilities P (x | c) and P (c) for any x and c. It is clear that
we can never know them exactly, but we may estimate them from the training
data. For example, P (S) may be approximated by the ratio of the number of
spam messages to the number of all messages in the training data. Estimation
of P (x | c) is much more complex and actually depends on how we choose the
feature vector x for message m. Let us try the most simple case of a feature
vector with a single binary attribute that denotes the presence of a certain word
w in the message. That is, we define the message’s feature vector xw to be, say,
1 if the word w is present in the message, and 0 otherwise. In this case it is
simple to estimate the required probabilities from data: for example

P (xw = 1 |S) ≈ number of training spam messages containing the word w

total number of training spam messages

So if we fix a word w we have everything we need to calculate Λ(xw) and so
we may use the Bayesian classifier described above. Here is the summary of the
algorithm that results:

• Training

1. Calculate estimates for P (c), P (xw = 1 | c), P (xw = 0 | c) (for c =
S, L) from the training data.

4Note that in the case when L(S, L) = L(L, S) = 1 and L(S, S) = L(L, L) = 0 we have
R(S |x) = P (L |x) and R(L |x) = P (S |x) so this rule reduces to the MAP rule.

5The proof follows straight from the observation that R(f) =
R

R(f(x) |x) dP (x).

65

2. Calculate P (c |xw = 0), P (c |xw = 1) using the Bayes’ rule.

3. Calculate Λ(xw) for xw = 0, 1, calculate λP (L)
P (S) . Store these 3 values.6

• Classification

1. Given a message m determine xw, retrieve the stored value for Λ(xw)
and use the decision rule to determine the category of message m.

Now this classifier will hardly be any good because it bases its decisions
on the presence or absence of one word in a message. We could improve the
situation if our feature vector contained more attrubutes. Let us fix several
words w1, w2, . . . , wm and define for a message m its feature vector as x =
(x1, x2, . . . , xm) where xi is equal to 1 if the word wi is present in the message,
and 0 otherwise. If we followed the algorithm described above, we would have
to calculate and store the values of Λ(x) for all possible values of x (and there
are 2m of them). This is not feasible in practice, so we introduce an additional
assumption: we assume that the components of the vector x are independent in
each class. In other words, the presence of one of the words wi in a message does
not influence the probability of presence of other words. This is a very wrong
assumption, but it allows us to calculate the required probabilities without
having to store large amounts of data, because due to independence

P (x | c) =
m∏

i=1

P (xi | c) Λ(x) =
m∏

i=1

Λi(xi)

So the algorithm presented above is easily adapted to become the Näıve Bayesian
classifier. The word “näıve” in the name expresses the näıveness of the assump-
tion used. Interestingly enough, the algorithm performs rather well in practice,
and currently it is one of the most popular solutions used in spam filters.7 Here
it is:

• Training

1. For all wi calculate and store Λi(xi) for xi = 0, 1. Calculate and
store λP (L)

P (S) .

• Classification

1. Determine x, calculate Λ(x) by multiplying the stored values for
Λi(xi). Use the decision rule.

The remaining question is which words to choose for determining the at-
tributes of the feature vector. The most simple solution is to use all the words
present in the training messages. If the number of words is too large it may be
reduced using different techniques. The most common way is to leave out words

6Of course it would be enough to store only two bits: the decision for the case xw = 0 and
for the case xw = 1, but we’ll need the Λ in the following, so let us keep it.

7It is worth noting, that there were successful attempts to use some less “näıve” assump-
tions. The resulting algorithms are related to the field of Bayesian belief networks [10, 15]

66

that are too rare or too common. It is also common to select the most relevant
words using the measure of mutual information [10]:

MI(Xi, C) =
∑

xi=0,1

∑
c=S,L

P (xi, c) log
P (xi, c)

P (xi)P (c)

We won’t touch this subject here, however, and in our experiment we shall
simply use all the words.

3.2 k Nearest Neighbors Classifier

Suppose that we have some notion of distance between messages. That is, we
are able to tell for any two messages how “close” they are to each other. As
already noted before, we may often use the eucledian distance between the
feature vectors of the messages for that purpose. Then we may try to classify
a message according to the classes of its nearest neighbors in the training set.
This is the idea of the k nearest neigbor algorithm:

• Training

1. Store the training messages.

• Classification

1. Given a message x, determine its k nearest neighbors among the
messages in the training set. If there are more spams among these
neighbors, classify given message as spam. Otherwise classify it as
legitimate mail.

As you see there is practically no “training” phase in its usual sense. The
cost of that is the slow decision procedure: in order to classify one document
we have to calculate distances to all training messages and find the k nearest
neighbors. This (in the most trivial implementation) may take about O(nm)
time for a training set of n messages containing feature vectors with m elements.
Performing some clever indexing in the training phase will allow to reduce the
complexity of classifying a message to about O(n) [1]. Another problem of
the presented algorithm is that there seems to be no parameter that we could
tune to reduce the number of false positives. This problem is easily solved by
changing the classification rule to the following l/k-rule:

If l or more messages among the k nearest neighbors of x are spam, classify
x as spam, otherwise classify it as legitimate mail.

The k nearest neighbor rule has found wide use in general classification
tasks. It is also one of the few universally consistent classification rules. We
shall explain that now.

Suppose we have chosen a set sn of n training samples. Let us denote the
k-NN classifier corresponding to that set as fsn

. As described in the previous
section, it is possible to determine certain average risc R(fsn) of this classifier.
We shall denote it by Rn. Note that Rn depends on the choice of the training
set and is therefore a random variable. We know that this risk is always greater
than the risk R∗ of the Bayesian classifier. However, we may hope that if the
size of the training set is large enough, the risk of the resulting k-NN classifier
will be close to the optimal risk R∗. That property is called consistency.

67

Definition A classification rule is called consistent, if the expectation of the
average risk E(Rn) converges to the optimal (Bayesian) risk R∗ as n goes to
infinity:

E(Rn) n→ R∗

We call a rule strongly consistent if

Rn
n→ R∗ almost everywhere

If a rule is (strongly) consistent for any distribution of (x, c), the rule is called
universally (strongly) consistent.

Therefore consistency is a very good feature because it allows to increase
the quality of classification by adding training samples. Universal consistency
means that this holds for any distribution of training samples and their cate-
gories (in particular: independently of whose mail messages are being filtered
and what kind of messages is understood under “spam”). And, as already men-
tioned before, the k-NN rule is (under certain conditions) universally consistent.
Namely, the following theorem holds:

Theorem (Stone, 1977) If k →∞ and k
n → 0, then k-NN rule is universally

consistent.

It is also possible to show, that if the distribution of training samples is
continuous (i.e. it owns a probability density function), then k-NN rule is uni-
versally strongly consistent under the conditions of the previous theorem [14].

Unfortunately, despite all these beautiful theoretical results, it occured to
be very difficult to make the k-NN algorithm show good results in practice.

3.3 Artificial Neural Networks

Artificial neural networks (ANN-s) is a large class of algorithms applicable to
classification, regression and density estimation. In general, a neural network is
a certain complex function that may be decomposed into smaller parts (neurons,
processing units) and represented graphically as a network of these neurons.
Quite a lot of functions may be represented this way, and therefore it is not
always clear which algorithms belong to the field of neural networks, and which
do not. There are, however the two “classical” kinds of neural networks, that
are most often meant when the term ANN is used: the perceptron and the
multilayer perceptron. We shall focus on the perceptron algorithm, and provide
some thoughts on the applicability of the multilayer perceptron.

3.3.1 The Perceptron

The idea of the perceptron is to find a linear function of the feature vector
f(x) = wT x + b such that f(x) > 0 for vectors of one class, and f(x) < 0 for
vectors of other class. Here w = (w1, w2, . . . , wm) is the vector of coefficients
(weights) of the function, and b is the so-called bias. If we denote the classes
by numbers +1 and −1, we can state that we search for a decision function
d(x) = sign(wT x + b). The decision function can be represented graphically
as a “neuron”, and that is why the perceptron is considered to be a “neural

68

Figure 1: Perceptron as a neuron

network”. It is the most trivial network, of course, with a single processing
unit.

If the vectors to be classified have only two components (i.e. x ∈ R2), they
can be represented as points on a plane. The decision function of a perceptron
can then be represented as a line that divides the plane in two parts. Vectors in
one half-plane will be classified as belonging to one class, vectors in the other
half-plane—as belonging to the other class. If the vectors have 3 components,
the decision boundary will be a plane in the 3-dimensional space, and in general,
if the space of feature vectors is n-dimensional, the decision boundary is an n-
dimensional hyperplane. This is an illustration of the fact that the perceptron
is a linear classifier.

The perceptron learning is done with an iterative algorithm. It starts with
arbitrarily chosen parameters (w0, b0) of the decision function and updates them
iteratively. On the n-th iteration of the algorithm a training sample (x, c) is
chosen such that the current decision function does not classify it correctly (i.e.
sign(wT

nx+ bn) 6= c). The parameters (wn, bn) are then updated using the rule:

wn+1 = wn + cx bn+1 = bn + c

The algorithm stops when a decision function is found that correctly classifies
all the training samples. If such a function does not exist (i.e. the classes
are not linearly separable), the learning algorithm will never converge, and the
perceptron is not applicable in this case. The fact that in case of linearly
separable classes the perceptron algorithm converges is known as the Perceptron
Convergence Theorem and was proven by Frank Rosenblatt in 1962. The proof
is available in any relevant textbook [2, 3, 4].

When data is not linearly separable the best we can do is stop the training
algorithm when the number of misclassifications becomes small enough. In our
experiments, however, the data was always linearly separable.8

To conclude, here’s the summary of the perceptron algorithm:
8This is not very surprising, because the size of feature vectors we used was much greater

than the number of training samples. It is known, that in an n-dimensional space n+1 points

69

• Training

1. Initialize w and b (to random values or to 0).

2. Find a training example (x, c) for which sign(wT x + b) 6= c. If there
is no such example, training is completed. Store the final w and b
and stop. Otherwise go to next step.

3. Update (w, b): w := w + cx, b := b + c. Go to previous step.

• Classification

1. Given a message x, determine its class as sign(wT x + b).

3.3.2 Multilayer Perceptron

Multilayer perceptron is a function that may be visualized as a network with
several layers of neurons, connected in a feedforward manner. The neurons in
the first layer are called input neurons, and represent input variables. The neu-
rons in the last layer are called output neurons and provide function result value.
The layers between the first and the last are called hidden layers. Each neuron
in the network is similar to a perceptron: it takes input values x1, x2, . . . xk, and
calculates its output value o by the formula

o = φ(
k∑

i=1

wixi + b)

where wi, b are the weights and the bias of the neuron and φ is a certain
nonlinear function. Most often φ(x) is is either 1

1+eax or tanh(x).

Figure 2: Structure of a multilayer perceptron

Training of the multilayer perceptron means searching for such weights and
biases of all the neurons for which the network will have as small error on the
training set as possible. That is, if we denote the function implemented by

in general position are linearly separable in any way (being in general position means that
no k of the points lie in a k − 2-dimensional affine subspace). The fact that feature space
dimension is larger than the number of training samples may mean that we have “too many
features” and this is not always good (see [11])

70

the network as f(x), then in order to train the network we have to find the
parameters that minimize the total training error :

E(f) =
n∑

i=1

|f(xi)− ci|2

where (xi, ci) are training samples. This minimization may be done by any
iterative optimization algorithm. The most popular is simple gradient descent,
which in this particular case bears the name of error backpropagation. The
detailed specification of this algorithm is presented in many textbooks or papers
(see [3, 4, 16]).

Multilayer perceptron is a nonlinear classifier: it models a nonlinear decision
boundary between classes. As it was mentioned in the previous section, the
training data that we used here was linearly separable, and using a nonlinear
decision boundary could hardly improve generalization performance. Therefore
the best result we could expect is the result of the simple perceptron. Another
problem in our case is that implementation of efficient backpropagation learning
for a network with about 20000 input neurons is quite nontrivial. So the only
feasible way of applying multilayer perceptron would be to reduce the number of
features to a reasonable amount. This paper does not deal with feature selection
and therefore won’t deal with practical application of the multilayer perceptron
either.

It should be noted, that of all the machine learning algorithms, the multilayer
perceptron has, perhaps, the largest number of parameters that must be tuned
in an ad-hoc manner. It is not very clear how many hidden neurons should
it contain, and what parameters for the backpropagation algorithm should be
chosen in order to achieve good generalization. Lots of papers and books have
been written covering this topic, but training of the multilayer perceptron still
retains a reputation of “black art”. This, fortunately, does not prevent this
learning method from being extensively used. And it has also been successfully
applied at spam filtering tasks: see [18, 19].

3.4 Support Vector Machine Classification

The last algorithm considered in this article is the Support Vector Machine clas-
sification algorithm. Support Vector Machines (SVM) is a family of algorithms
for classification and regression developed by V. Vapnik, that is now one of the
most widely used machine learning techniques with lots of applications [12].
SVMs have a solid theoretical foundation—the Statistical Learning Theory that
guarantees good generalization performance of SVMs. Here we only consider
the most simple possible SVM application—classification of linearly separable
classes—and we omit the theory. See [2] for a good reference on SVM.

The idea of SVM classification is the same as that of the perceptron: find a
linear separation boundary wT x + b = 0 that correctly classifies training sam-
ples (and, as it was mentioned, we assume that such a boundary exists). The
difference from the perceptron is that this time we don’t search for any separat-
ing hyperplane, but for a very special maximal margin separating hyperplane,
for which the distance to the closest training sample is maximal.

Definition Let X = {(xi, ci)}, xi ∈ Rm, ci ∈ {−1,+1} denote as usually
the set of training samples. Suppose (w, b) is a separating hyperplane (i.e.

71

sign(wT xi + b) = ci for all i). Define the margin mi of a training sample (xi, ci)
with respect to the separating hyperplane as the distance from point xi to the
hyperplane:

mi =
|wT xi + b|

‖w‖
The margin m of the separating hyperplane with respect to the whole training
set X is the smallest margin of an instance in the training set:

m = min
i

mi

Finally, the maximal margin separating hyperplane for a training set X is the
separating hyperplane having the maximal margin with respect to the training
set.

Figure 3: Maximal margin separating hyperplane. Circles mark the support
vectors.

Because the hyperplane given by parameters (x, b) is the same as the hy-
perplane given by parameters (kx, kb), we can safely bound our search by only
considering canonical hyperplanes for which min

i
|wT xi + b| = 1. It is possible

to show that the optimal canonical hyperplane has minimal ‖w‖, and that in or-
der to find a canonical hyperplane it suffices to solve the following minimization
problem: minimize 1

2w
T w under the conditions

ci(wT xi + b) ≥ 1, i = 1, 2, . . . , n

Using the Lagrangian theory the problem may be trasformed to a certain dual
form: maximize

Ld(α) =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjcicjxT
i xj

with respect to the dual variables α = (α1, α2, . . . , αn) so that αi ≥ 0 for all i
and

∑n
i=1 αici = 0.

72

This is a classical quadratic optimization problem, also known as a quadratic
programme. It mostly has a guaranteed unique solution, and there are efficient
algorithms for finding this solution. Once we have found the solution α, the
parameters (wo, bo) of the optimal hyperplane are determined as:

wo =
n∑

i=1

αicixi

bo =
1
ck
−wT

o xk

where k is an arbitrary index for which αk 6= 0.
It is more-or-less clear that the resulting hyperplane is completely defined by

the training samples that are at minimal distance to it (they are marked with
circles on the figure). These training samples are called support vectors and thus
give the name to the method. It is possible to tune the amount of false positives
produced by an SVM classifier, by using the so-called soft margin hyperplane
and there are also lots of other modifications related to SVM learning, but we
shall not discuss these details here as they go out of the scope of this article.

Here’s the summary of the SVM classifier algorithm:

• Training

1. Find α that solves the dual problem (i.e. maximizes Ld under named
constraints)

2. Determine w and b for the optimal hyperplane. Store the values.

• Classification

1. Given a message x, determine its class as sign(wT x + b).

4 The Algorithms: Practice

In theory there is no difference between theory and
practice, but in practice there is.

Now let us consider the performance of the discussed algorithms in practice.
To estimate performance, I created the straightforward C++ implementations of
the algorithms9, and tested them on the PU1 spam corpus [7]. No optimizations
were attempted in the implementations, and a very primitive feature extractor
was used. The benchmark corpus was created a long time ago, so the messages
in it are not representative of the spam that one receives nowadays. Therefore
the results should not be considered very authoritative. They only provide a
general feeling of how the algorithms compare to each other, and maybe some
ideas on how to achieve better filtering performance. Consequently, I shall not
focus on the numbers obtained in the tests, but rather present some of my
conclusions and opinions. The source code of this work is freely available and
anyone interested in exact numbers may try running the algorithms himself [23].

9And I used the SVMLight package by Thorsten Joachims [13] for SVM classification. The
SVM algorithm is not so straightforward after all.

73

4.1 Test Data

The PU1 corpus of e-mail messages collected by Ion Androutsopoulos [7] was
used for testing. The corpus consists of 1099 messages, of which 481 are spam. It
is divided into 10 parts for performing 10-fold cross-validation (that is, we use 9
of the parts for training and the remaining part for validation of the algorithms).
The messages in the corpus have been preprocessed: all the attachments, HTML
tags and header fields except Subject were stripped, and words were encoded
with numbers. The corpus comes in four flavours: the original version, a version
where a lemmatizer was applied to the messages so each word got converted to
its base form, a version processed by a “stop-list” so the 100 most frequent
English words were removed from each message, and a version processed by
both the lemmatizer and the stop-list. Some preliminary tests showed that the
algorithms performed better on the messages processed by both the lemmatizer
and the stop-list, therefore only this version of the corpus was used in further
tests. I would like to note that in my opinion this corpus does not precisely
reflect the real-life situation. Namely, message headers, HTML tags and amount
of spelling mistakes in a message are among the most precise indicators of spam.
Therefore it is reasonable to expect that results obtained with this corpus are
worse than what could be in real life. It is good to get pessimistic estimates,
therefore the corpus suits nicely for this kind of work. Besides, the corpus is
very convenient to deal with thanks to the efforts of its author on preprocessing
and formatting the messages.

4.2 Test Setup and Efficiency Measures

Every message was converted to a feature vector with 21700 attributes (this is
approximately the number of different words in all the messages of the corpus).
An attribute n was set to 1 if the corresponding word was present in a mes-
sage, and to 0 otherwise. This feature extraction scheme was used for all the
algorithms. The feature vector of each message was given for classification to
a classification algorithm trained on the messages of the 9 parts of the corpus,
that did not contain the message to be classified.

For every algorithm we counted the number NS→L of spam messages incor-
rectly classified as legitimate mail (false negatives) and the number NL→S of le-
gitimate messages, incorrectly classified as spam (false positives). Let N = 1099
denote the total number of messages, NS = 481 — the number of spam mes-
sages, and NL = 618 — the number of legitimate messages. The quantities of
interest are then the error rate

E =
NS→L + NL→S

N

precision
P = 1− E

legitimate mail fallout

FL =
NL→S

NL

and spam fallout

FS =
NS→L

NS

74

Note that the error rate and precision must be considered relatively to the
case of no classifier. For if we use no spam filter at all we have guaranteed
precision NL

N , which is in our case greater than 50%. Therefore we are actually
interested in how good is our classifier with respect to this so-called trivial
classifier. We shall refer to the ratio of the classifier precision and the trivial
classifier precision as gain:

G =
P

NL/N
=

N −NS→L −NL→S

NL

4.3 Basic Algorithm Performance

The following table presents the results obtained in the way described above.

Algorithm NL→S NS→L P FL FS G

Näıve Bayes (λ = 1) 0 138 87.4% 0.0% 28.7% 1.56
k-NN (k = 51) 68 33 90.8% 11.0% 6.9% 1.61
Perceptron 8 8 98.5% 1.3% 1.7% 1.75
SVM 10 11 98.1% 1.6% 2.3% 1.74

The first thing that is very surprising and unexpected is the incredible per-
formance of the perceptron. After all, it is perhaps the most simple and the
fastest algorithm described here. It has even beaten the SVM by a bit, though
theoretically SVM should have had better generalization.10

The second observation is that the näıve bayesian classifier produced no
false positives at all. This is most probably a feature of my implementation of
the algorithm, but, to tell the truth, I could not figure out exactly where the
asymmetry came from. Anyway, such a feature is very desirable, so I decided
not to correct it. It must also be noted, that when there are less attributes in
the feature vector (say, 1000–2000), the algorithm does behave as it should, and
has both false positives and false negatives. The number of false positives may
then be reduced by increasing the λ parameter. As more features are used, the
number of false positives decreases whereas the number of false negatives stays
approximately the same. With a very large number of features adjusting the λ
has nearly no effect, because for most cases the likelihood ratio for a message
appears to be either 0 or ∞.

The performance of the k-nearest neighbors classifier appeared to be nearly
independent of the value of k. In general it was poor, and the number of false
positives was always rather large.

As noted in the beginning of this article, a spam filter may not have false
positives. According to this criteria, only the näıve bayesian classifier (in my
weird implementation) has passed the test. We shall next try to tune the other
algorithms to obtain better results.

4.4 Eliminating False Positives

We need a spam filter with low probability of false positives. Most of the
classification algorithms we discussed here have some parameter that may be

10The superiority of SVM showed itself when 2-fold cross-validation was used (i.e. the corpus
was divided into two parts instead of ten). In that case the performance of the perceptron
got worse, but SVM performance stayed the same.

75

adjusted to decrease the probability of false positives at the price of increasing
the probability of false negatives. We shall adjust the corresponding parameters
so that the classifier has no false positives at all. We shall be very strict at this
point and require the algorithm to produce no false positives when trained on
any set of parts of the corpus and tested on the whole corpus. In particular,
the algorithm should not produce false positives when trained on only one part
of the corpus and tested on the whole corpus. It seems reasonable to hope that
if a filter satisfies this requirement, we may trust it in real life.

Now let us take a look at what we can tune. The näıve bayesian classifier
has the λ parameter, that we can increase. The k-NN classifier may be replaced
with the l/k classifier the number l may be then adjusted together with k. The
perceptron can not be tuned, so he leaves the competition at this stage. The
hard-margin SVM classifier also can’t be improved, but its modification, the
soft-margin classifier can. Though the inner workings of that algorithm were
not discussed here, the corresponding result will be presented anyway.

The required parameters were determined experimentally. I didn’t actually
test that the obtained classifiers satisfied the stated requirement precisely be-
cause it would require trying 210 different training sets, but I did test quite a lot
of combinations, so the parameters obtained must be rather close to the target.
Here are the performance measures of the resulting classifiers (the measures
were obtained in the same way as described in the previous section)

Algorithm NL→S NS→L P FL FS G

Näıve Bayes (λ = 8) 0 140 87.3% 0.0% 29.1% 1.55
l/k-NN (k = 51, l = 35) 0 337 69.3% 0.0% 70.0% 1.23
SVM soft margin (cost=0.3) 0 101 90.8% 0.0% 21.0% 1.61

It is clear that the l/k-classifier can not stand the comparison with the two
other classifiers now. So we throw it away and conclude the section by stating
that we have found two more-or-less working spam-filters—the SVM soft margin
filter, and the näıve bayesian filter. There is still one idea left: maybe we can
combine them to achieve better precision?

4.5 Combining Classifiers

Let f and g denote two spam filters that both have very low probability of false
positives. We may combine them to get a filter with better precision if we use
the following classification rule:

Classify message x as spam if either f or g classifies it as spam. Otherwise
(if f(x) = g(x) = L) classify it as legitimate mail.

We shall refer to the resulting classifier as the union11 of f and g and denote
it as f ∪ g. It may seem that we are doing a dangerous thing here because the

11The name comes from the observation that with a fixed training set, the set of false
positives of the resulting classifier is the union of the sets of false positives of the original
classifiers (and the set of false negatives is the intersection of corresponding sets). One may
note that we can define a dual operation: the intersection of classifiers, by replacing the
word spam with the word legitimate and vice versa in the definition of the union. The set of
all classifiers together with these two operations then form a bounded complete distributive
lattice. But that’s most probably just a mathematical curiosity with little practical value

76

resulting classifier will produce a false positive for a message x if either of the
classifiers does. But remember, we assumed that the classifiers f and g have
very low probability of false positives. Therefore the probability that either of
them does such a mistake is also very low, so union is safe in this sense. Here
is the idea explained in other words:

If for a message x it holds f(x) = g(x) = c, we classify x as belonging to
c (and that is natural, isn’t it?). Now suppose f(x) 6= g(x), for example
f(x) = L and g(x) = S. We know that g is unlikely to misclassify legitimate
mail as spam, so the reason that the algorithms gave different results is most
probably related to the fact that f just chose the safe, although the wrong
decision. Therefore it is logical to assume that the real class of x is S rather
than L.

The number of false negatives of the resulting classifier is of course less than
of the original ones, because for a message x to be a false negative of f∪g it must
be a false negative for both f and g. In the previous section we obtained two
classifiers “without” false positives. Here are the performance characteristics of
their union:

Algorithm NL→S NS→L P FL FS G

N.B. ∪ SVM s. m. 0 61 94.4% 0.0% 12.7% 1.68

And the last idea. Let h be a classifier with high precision (the perceptron
or the hard margin SVM classifier for example). We may use it to reduce
the probability of false positives of f ∪ g yet more in the following way. If
f(x) = g(x) = c we do as before, i.e. classify x to class c. Now if for a message
x the classifiers f and g give different results we do not blindly choose to classify
x as spam, but consult h instead. Because h has high precision, it is reasonable
to hope that it will give a correct answer. Thus h functions as an additional
protective measure against false positives. So we define the following way of
combining three classifiers:

Given message x classify it to class c if at least two of the classifiers f , g
and h classify it as c.

It is easy to see that this 2-of-3 rule is equivalent to what was discussed.12

Note that though the rule itself is symmetric, the way it is to be applied is
not: one of the classifiers must have high precision, and the two others—low
probability of false positives.

If we combine the näıve bayesian and the SVM soft margin classifiers with
the perceptron this way, we obtain a classifier with the following performance
characteristics:

Algorithm NL→S NS→L P FL FS G

2-of-3 0 62 94.4% 0.0% 12.9% 1.68

As you see we made our previous classifier a bit worse with respect to false
negatives. We may hope, however, that we made it a bit better with respect to
false positives.

12In the terms defined in the previous footnote, this classifier may be denoted as (f ∩ g) ∪
(g ∩ h) ∪ (f ∩ h) or as (f ∪ g) ∩ (g ∪ h) ∩ (f ∪ h).

77

5 The Conclusion

Before I started writing this paper I had a strong opinion, that a good machine-
learning spam filtering algorithm is not possible, and the only reliable way of
filtering spam is by creating a set of rules by hand. I have changed my mind a
bit by now. That is the main result for me. I hope that the reader too could
find something new for him in this work.

References

[1] K. Aas, L. Eikvil. Text Categorization: A Survey. 1999.
http://citeseer.ist.psu.edu/aas99text.html

[2] N. Cristianini, J. Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods. 2003, Cambridge University Press.
http://www.support-vector.net

[3] V. Kecman. Learning and Soft Computing. 2001, The MIT Press.

[4] S. Haykin. Neural Networks: A Comprehensive Foundation. 1998, Prentice
Hall.

[5] F. Sebastiani. Text Categorization.
http://faure.iei.pi.cnr.it/~fabrizio/

[6] I. Androutsopoulos et al. Learning to Filter Spam E-Mail: A Comparison of
a Naive Bayesian and a Memory-Based Approach.
http://www.aueb.gr/users/ion/publications.html

[7] I. Androutsopoulos et al. An Experimental Comparison of Näıve Bayesian
and Keyword-Based Anti-Spam Filtering with Personal E-mail Messages.
http://www.aueb.gr/users/ion/publications.html

[8] P. Graham. A Plan for Spam.
http://www.paulgraham.com/antispam.html

[9] P. Graham. Better Bayesian Filtering.
http://www.paulgraham.com/antispam.html

[10] M. Sahami et al. A Bayesian Approach to Filtering Junk E-Mail

[11] H. Drucker, D. Wu, V. Vapnik. SVM for Spam categorization
http://www.site.uottawa.ca/~nat/Courses/NLP-Course/itnn_1999_
09_1048.pdf

[12] SVM Application List.
http://www.clopinet.com/isabelle/Projects/SVM/applist.html

[13] T. Joachims. Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning, B. Schlkopf and C.
Burges and A. Smola (ed.), MIT-Press, 1999.
http://svmlight.joachims.org

78

http://citeseer.ist.psu.edu/aas99text.html
http://www.support-vector.net
http://faure.iei.pi.cnr.it/~fabrizio/
http://www.aueb.gr/users/ion/publications.html
http://www.aueb.gr/users/ion/publications.html
http://www.paulgraham.com/antispam.html
http://www.paulgraham.com/antispam.html
http://www.site.uottawa.ca/~nat/Courses/NLP-Course/itnn_1999_09_1048.pdf
http://www.site.uottawa.ca/~nat/Courses/NLP-Course/itnn_1999_09_1048.pdf
http://www.clopinet.com/isabelle/Projects/SVM/applist.html
http://svmlight.joachims.org

[14] J. Lember. Statistiline õppimine (loengukonspekt).
http://www.ms.ut.ee/ained/LL.pdf

[15] S. Laur. Tõenäosuste leidmine Bayes’i võrkudes.
http://www.egeen.ee/u/vilo/edu/2003-04/DM_seminar_2003_II/
Raport/P08/main.pdf

[16] K. Tretyakov, L. Parts. Mitmekihiline tajur.
http://www.ut.ee/~kt/hw/mlp/multilayer.pdf

[17] M. B. Newman. An Analytical Look at Spam.
http://www.vgmusic.com/~mike/an_analytical_look_at_spam.html

[18] C. Eichenberger, N. Fankhauser. Neural Networks for Spam Detection.
http://variant.ch/phpwiki/NeuralNetworksForSpamDetection

[19] M. Vinther. Intelligent junk mail detection using neural networks.
www.logicnet.dk/reports/JunkDetection/JunkDetection.pdf

[20] InfoAnarchy Wiki: Spam.
http://www.infoanarchy.org/wiki/wiki.pl?Spam

[21] S. Mason. New Law Designed to Limit Amount of Spam in E-Mail.
http://www.wral.com/technology/2732168/detail.html

[22] http://spam.abuse.net/

[23] Source code of the programs used for this article is available at
http://www.ut.ee/~kt/spam/spam.tar.gz

Internet URL-s of the references were valid on May 1, 2004.

79

http://www.ms.ut.ee/ained/LL.pdf
http://www.egeen.ee/u/vilo/edu/2003-04/DM_seminar_2003_II/Raport/P08/main.pdf
http://www.egeen.ee/u/vilo/edu/2003-04/DM_seminar_2003_II/Raport/P08/main.pdf
http://www.ut.ee/~kt/hw/mlp/multilayer.pdf
http://www.vgmusic.com/~mike/an_analytical_look_at_spam.html
http://variant.ch/phpwiki/NeuralNetworksForSpamDetection
www.logicnet.dk/reports/JunkDetection/JunkDetection.pdf
http://www.infoanarchy.org/wiki/wiki.pl?Spam
http://www.wral.com/technology/2732168/detail.html
http://spam.abuse.net/
http://www.ut.ee/~kt/spam/spam.tar.gz

	Introduction
	Statement of the Problem
	Extracting Features
	Classifier Performance

	The Algorithms: Theory
	The Naïve Bayesian Classifier
	Bayesian Classification
	The Naïve Bayesian Classifier

	k Nearest Neighbors Classifier
	Artificial Neural Networks
	The Perceptron
	Multilayer Perceptron

	Support Vector Machine Classification

	The Algorithms: Practice
	Test Data
	Test Setup and Efficiency Measures
	Basic Algorithm Performance
	Eliminating False Positives
	Combining Classifiers

	The Conclusion

