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Today 

1. Optimization is important 

2. Optimization is possible* 

 

* Basic techniques 
  Constrained / Unconstrained 

  Analytic / Iterative 

  Continuous / Discrete 
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Special cases of optimization 

 Machine learning 

 … 
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Special cases of optimization 

 Machine learning 

 Algorithms and data structures 

 General problem-solving 

 Management and decision-making 
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Special cases of optimization 

 Machine learning 

 Algorithms and data structures 

 General problem-solving 

 Management and decision-making 

 Evolution 

 The Meaning of Life? 
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Optimization task 

Given a function 

 

  

 

find the argument x resulting in the optimal 

value. 
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Constrained optimization task 

Given a function 

 

  

 

find the argument x resulting in the optimal 

value, subject to 
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Optimization methods 

In principle, x can be anything: 

 

 Discrete 

 Value (e.g.  a name) 

 Structure (e.g. a graph, plaintext) 

 Finite / infinite 

 Continuous* 

 Real-number, vector, matrix, … 

 Complex-number,  function, … 
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Optimization methods 

In principle, f can be anything: 

 

 Random oracle 

 Structured 

 Continuous 

 Differentiable 

 Convex 

 … 
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Knowledge about f 

Not much A lot 

Type of x 

Discrete 

Continuous 
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Knowledge about f 

Not much A lot 

Type of x 

Discrete 

Combinatorial 

search: 

Brute-force, 

Stepwise, MCMC, 

Population-based, …  

Algorithmic 

Continuous 

Numeric methods: 

Gradient-based, 

Newton-like, 

MCMC, 

Population-based, … 

Analytic 

Finding a weight-

vector w, that 

minimizes the model 

error, 

in many practical 

cases 



Optimization methods 

AACIMP Summer School. 

August, 2012 

Knowledge about f 

Not much A lot 

Type of x 

Discrete 

Combinatorial 

search: 

Brute-force, 

Stepwise, MCMC, 

Population-based, …  

Algorithmic 

Continuous 

Numeric methods: 

Gradient-based, 

Newton-like, 

MCMC, 

Population-based, … 

Analytic 

 

 

This lecture 

 

 

 



Minima and maxima 

AACIMP Summer School. 

August, 2012 



Differentiability 

AACIMP Summer School. 

August, 2012 

𝒇 𝒙 = 𝒃 + 𝒄𝚫𝒙 
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𝒇 𝒙𝟏, 𝒙𝟐 = 𝒃 + 𝒄𝟏𝚫𝒙𝟏 + 𝒄𝟐𝚫𝐱𝟐 
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The Most Important Observation 

 This small observation gives us everything we 

need for now 

 

 A nice interpretation of the gradient 

 An extremality criterion 

 An iterative algorithm for function minimization 
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Interpretation of the gradient 
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Interpretation of the gradient 
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Extremality criterion 
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Iterative algorithm 

1. Pick random point 𝒙0 

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum. 

3. Otherwise, 
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Iterative algorithm 

1. Pick random point 𝒙0 

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum. 

3. Otherwise, make a small step downhill: 

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0  
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Iterative algorithm 

1. Pick random point 𝒙0 

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum. 

3. Otherwise, make a small step downhill: 

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0  

4. … and then another step 

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1  

5. … and so on until 
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Gradient descent 

1. Pick random point 𝒙0 

2. If 𝛻𝑓 𝒙0 = 𝟎, then we’ve found an extremum. 

3. Otherwise, make a small step downhill: 

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0  

4. … and then another step 

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1  

5. … and so on until 𝛻𝑓 𝒙𝑛 ≈ 𝟎 or we’re tired. 

 
With a smart choice of 𝜇𝑖 we’ll converge to a minimum 
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Gradient descent 

1.   
2.   

3.  

𝒙1 ← 𝒙0 − 𝜇0𝛻𝑓 𝒙0  

4.  

𝒙2 ← 𝒙1 − 𝜇1𝛻𝑓 𝒙1  
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Gradient descent 

 

 

 

𝒙𝑖+1 ← 𝒙𝑖 − 𝜇𝑖𝛻𝑓 𝒙𝑖  
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Gradient descent 

 

 

 

∆𝒙𝑖= −𝜇𝑖𝛻𝑓 𝒙𝑖  
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Gradient descent 

 

 

 

∆𝒙𝑖= −𝜇𝒄 
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Gradient descent (fixed step) 
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∆𝒙𝑖= −𝜇 𝛻𝑓 𝒙𝑖  
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∆𝒙𝑖= −𝜇 𝛻𝑓 𝒙𝑖  
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𝒙𝟏, 𝒙𝟐, … , 𝒙𝟓𝟎 
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𝑓 𝒘 = 𝒙𝒊 −𝒘 𝟐

𝒊
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𝛻𝑓 𝒘 = − 2(𝒙𝒊 −𝒘)

𝒊
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𝛻𝑓 𝒘 = 2𝑛(𝒘 − 𝒙 ) 
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𝛻𝑓 𝒘 = 𝟎 
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𝛻𝑓 𝒘  
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𝚫𝐰 = −𝜇𝛻𝑓 𝒘  



Stochastic gradient descent 

 Whenever  

𝑓 𝒘 = 𝑔(𝒘, 𝒙𝒌) 

 

AACIMP Summer School. 

August, 2012 



Stochastic gradient descent 

 Whenever  

𝑓 𝒘 = 𝑔(𝒘, 𝒙𝒌) 

 

   e.g. 

Error 𝒘 = model𝒘 𝒙𝒌 − 𝒚𝒌
𝟐 
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Stochastic gradient descent 

 Whenever  

𝑓 𝒘 = 𝑔(𝒘, 𝒙𝒌) 

the gradient is also a sum: 

𝛻𝑓 𝒘 = 𝛻𝑔(𝒘, 𝒙𝒌) 
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Stochastic gradient descent 

 Whenever  

𝑓 𝒘 = 𝑔(𝒘, 𝒙𝒌) 

the gradient is also a sum: 

𝛻𝑓 𝒘 = 𝛻𝑔(𝒘, 𝒙𝒌) 

 The GD step is then also a sum 

∆𝒘𝒊 = −𝜇 𝛻𝑔 𝒘𝒊, 𝒙𝒌  
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Stochastic gradient descent 

 Batch update: 

∆𝒘𝒊 = −𝜇 𝛻𝑔 𝒘𝒊, 𝒙𝒌  
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Stochastic gradient descent 

 Batch update: 

∆𝒘𝒊 = −𝜇 𝛻𝑔 𝒘𝒊, 𝒙𝒌  

 

 On-line update: 

 

∆𝒘𝒊 = −𝜇 𝛻𝑔 𝒘𝒊, 𝒙𝒓𝒂𝒏𝒅𝒐𝒎  
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Example 
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𝚫𝐰 = 𝜇(𝒙𝒊 −𝒘) 



Summary 

 An interpretation of the gradient 

 An extremality criterion 

 An iterative algorithm for function 

minimization 

 A stochastic iterative algorithm for 

function minimization 
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Quiz 

 The symbol 𝚫 is called ______ and denotes 

_____ 

 

 

 The symbol 𝛁 is called ______ and denotes 

_____ 
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Quiz 

 Gradient descent: 

∆𝒘𝑖= _________ 
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Quiz 

 Gradient descent: 
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Quiz 
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Quiz 

 Gradient descent: 

∆𝒘𝑖= −𝜇𝒄 
 

 Suppose the batch gradient descent step is 

∆𝒘𝒊 = 𝒘𝑻𝒙𝒊 + 𝒙𝒊
𝟐 𝒆

𝒊

 

the corresponding stochastic gradient descent 

step is:   

𝚫𝒘𝒊 = _______________ 
AACIMP Summer School. 
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 Can bacteria learn? 
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Supervised Learning 

 Let 𝑋 and 𝑌 be some sets. 

 Let there be a training dataset: 

𝐷 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛  

𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 
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Supervised Learning 

 Let 𝑋 and 𝑌 be some sets. 

 Let there be a training dataset: 

𝐷 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛  

𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌 

 Supervised learning: 
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Find a function 𝑓: 𝑋 → 𝑌,  

generalizing the dependency  

present in the data. 



Classification 

 𝑋 = ℝ2,      𝑌 = {blue, red} 

 𝐷 = { 1.3, 0.8 , red , 2.5,2.3 , blue , … } 

 𝑓 𝑥1, 𝑥2 = if 𝑥1 + 𝑥2 > 3 then blue else red 
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Regression 

 𝑋 = ℝ,      𝑌 = ℝ 

 𝐷 = { 0.5, 0.26 , 0.43, 0.08 , … } 

 𝑓 𝑥 = 𝑥2 
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Linear Regression 

 𝑋 = ℝ,      𝑌 = ℝ 

 𝐷 = { 0.5, 0.26 , 0.43, 0.08 , … } 

 𝑓 𝑥 = −0.14 + 1.01 𝑥  
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Linear Regression 

𝑋 = ℝm,   Y = ℝ 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑚𝑥𝑚 
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Linear Regression 

𝑋 = ℝm,   Y = ℝ 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑚𝑥𝑚 

 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 〈𝒘, 𝒙〉 
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Linear Regression 

𝑋 = ℝm,   Y = ℝ 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑚𝑥𝑚 

 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 〈𝒘, 𝒙〉 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + (𝑤1, … , 𝑤𝑚)

𝑥1
𝑥2
⋮
𝑥𝑚
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Linear Regression 

𝑋 = ℝm,   Y = ℝ 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑚𝑥𝑚 

 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + 〈𝒘, 𝒙〉 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 + (𝑤1, … , 𝑤𝑚)

𝑥1
𝑥2
⋮
𝑥𝑚

 

𝑓 𝑥1, … , 𝑥𝑚 = 𝑤0 +𝒘𝑇𝒙 
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Linear Regression 

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙 
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Linear Regression 

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙 
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Bias term 



Linear Regression 

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙 

 

𝑓 𝑥1, … , 𝑥𝑚 = (𝑤0, 𝑤1, … , 𝑤𝑚)

1
𝑥1
⋮
𝑥𝑚
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Linear Regression 

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙 

 

𝑓 𝑥1, … , 𝑥𝑚 = (𝑤0, 𝑤1, … , 𝑤𝑚)

1
𝑥1
⋮
𝑥𝑚

 

 

𝑓 𝒙 = 𝒘 𝑇𝒙  
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Linear Regression 

𝑓 𝒙 = 𝒘𝑇𝒙 
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Linear Regression 

𝑓 𝑥 = 𝑤𝑥 
AACIMP Summer School. 
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Objective Function 

𝑒𝑖 = 𝑓(𝑥𝑖) − 𝑦𝑖
2 
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Objective Function 

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖
2 
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Objective Function 

𝑒𝑖 = 𝑤𝑥𝑖 − 𝑦𝑖
2 
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Objective Function 

𝐸𝐷(𝑤) = 𝑤𝑥𝑖 − 𝑦𝑖
2

𝑖
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“OLS” 



Objective Function 

𝐸𝐷(𝑤) = 𝑤𝑥𝑖 − 𝑦𝑖
2

𝑖
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Objective Function 

𝐸𝐷(𝒘) = 𝒘𝑻𝒙𝒊 − 𝑦𝑖
2

𝑖
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Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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(…𝒙𝟏
𝑻…)    𝒙𝟏

𝑻𝒘

(…𝒙𝟐
𝑻…)    𝒙𝟐

𝑻𝒘
⋮

(…𝒙𝒏
𝑻…)    𝒙𝒏

𝑻𝒘

 

𝑦1
𝑦2
⋮
𝑦𝑛

 

⋮
𝒘
⋮

 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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(…𝒙𝟏
𝑻…)    𝒙𝟏

𝑻𝒘

(…𝒙𝟐
𝑻…)    𝒙𝟐

𝑻𝒘
⋮

(…𝒙𝒏
𝑻…)    𝒙𝒏

𝑻𝒘

 

𝑦1
𝑦2
⋮
𝑦𝑛

 

⋮
𝒘
⋮

 
𝑿 𝒚 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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𝑿𝒘− 𝒚 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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𝑿𝒘− 𝒚 𝟐 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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𝑿𝒘− 𝒚 𝟐 

𝑿𝒘 ≈ 𝒚 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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𝑿𝒘− 𝒚 𝟐 

𝒘 ≈ 𝑿−𝟏𝒚? 

𝑿𝒘 ≈ 𝒚 



Objective Function 

𝐸𝐷 𝒘 = 𝒙𝒊
𝑇𝒘− 𝑦𝑖

2

𝑖
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𝑿𝒘− 𝒚 𝟐 

𝒘 = 𝑿+𝒚 ! 

𝑿𝒘 ≈ 𝒚 



Optimization 

 

argmin𝐰 𝑿𝒘 − 𝒚 2 
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Optimization 

 

argmin𝐰
1

2
𝑿𝒘 − 𝒚 2 
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Optimization 

 

argmin𝐰
1

2
𝑿𝒘 − 𝒚 2 

 
1

2
𝑿𝒘 − 𝒚 𝑇(𝑿𝒘 − 𝒚) 
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𝒂 2 = 𝒂𝑇𝒂 



Optimization 

 

argmin𝐰
1

2
𝑿𝒘 − 𝒚 2 

 
1

2
𝑿𝒘 − 𝒚 𝑇(𝑿𝒘 − 𝒚) 

 
1

2
𝒘𝑇𝑿𝑇  − 𝒚𝑇 (𝑿𝒘 − 𝒚) 
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𝒂 + 𝒃 𝑇 = (𝒂𝑇 + 𝒃𝑇) 



Optimization 

1

2
𝒘𝑇𝑿𝑇  − 𝒚𝑇 (𝑿𝒘 − 𝒚) 

 
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 𝒚𝑇𝑿𝒘−𝒘𝑻𝑿𝑻𝒚 + 𝒚𝑻𝒚  
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𝒂 𝒃 + 𝒄 = 𝒂𝒃 + 𝒂𝒄 



Optimization 

1

2
𝒘𝑇𝑿𝑇  − 𝒚𝑇 (𝑿𝒘 − 𝒚) 

 
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 𝒚𝑇𝑿𝒘−𝒘𝑻𝑿𝑻𝒚 + 𝒚𝑻𝒚  

 
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘+ 𝒚𝑻𝒚  
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𝒚𝑻𝑿𝒘 = 𝒘𝑻𝑿𝑻𝒚 = scalar 



Optimization 

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘+ 𝒚𝑇𝒚  
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Optimization 

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘+ 𝒚𝑇𝒚  

 

 

 

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 
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𝛁 𝒇 + 𝒈 = 𝛁𝐟 + 𝛁𝐠 

𝛁 𝒘𝑻𝑨𝒘 = 2𝑨𝒘 

𝛁 𝒂𝑻𝒘 = 𝒂 



Optimization 

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘+ 𝒚𝑇𝒚  

 

 

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 

𝟎 = 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 

𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚 
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Optimization 

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘+ 𝒚𝑇𝒚  

 

 

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 

𝟎 = 𝑿𝑻𝑿𝒘− 𝑿𝑻𝒚 

𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚 

 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 
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Linear Regression Solution 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 
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Linear Regression Solution 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 

 

X = matrix(X) 

y = matrix(y) 

w =(X.T * X).I * X.T * y 
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Linear Regression Solution 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 

 

X = matrix(X) 

y = matrix(y) 

w =(X.T * X).I * X.T * y 
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Moore-Penrose 

pseudoinverse 



Linear Regression Solution 

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 
𝒘 = 𝑿+𝒚 

X = matrix(X) 

y = matrix(y) 

w =(X.T * X).I * X.T * y 

w = pinv(X) * y 

AACIMP Summer School. 

August, 2012 

Moore-Penrose 

pseudoinverse 



Linear Regression & SKLearn 

from sklearn.linear_model import 

                LinearRegression 

 

model = LinearRegression() 

model.fit(X, y) 

 

w=(model.intercept_,model.coef_) 

model.predict(X_new) 
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Stochastic Gradient Regression 

𝚫𝒘 = −𝜇(𝒘𝑇𝒙𝑖 − 𝑦𝑖)𝒙𝒊 
 

AACIMP Summer School. 

August, 2012 



Stochastic Gradient Regression 

𝚫𝒘 = −𝜇𝑒𝑖𝒙𝒊 
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Stochastic Gradient Regression 

𝚫𝒘 = −𝜇𝑒𝑖𝒙𝒊 
 

AACIMP Summer School. 

August, 2012 

from sklearn.linear_model import SGDRegressor 

 

model = SGDRegressor(alpha=0, n_iter=30) 

model.fit(X, y) 



Polynomial Regression 

Say we’d like to fit a model: 

 

𝑓 𝑥1, 𝑥2
= 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

2 + 𝑤3𝑥1𝑥2 
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Polynomial Regression 

Say we’d like to fit a model: 

 

𝑓 𝑥1, 𝑥2
= 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2

2 + 𝑤3𝑥1𝑥2 

 

Simply transform the features and proceed as 

normal: 

𝑥1, 𝑥2 → (𝑥1, 𝑥2
2, 𝑥1𝑥2) 
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Single-variable Polynomial OLS 

# n x 1 matrix 

x = matrix(…) 

 

# Add bias & square features 

X = hstack([x**0, x**1, x**2]) 

 

# Solve for w 

w = pinv(X) * y 
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Overfitting 
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Regularization 
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2 
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1
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 1 

ℓ1-penalty ℓ2-loss 
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 0 

ℓ0-penalty ℓ2-loss 



Regularization 
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 0 

ℓ0-penalty ℓ2-loss 

>>> SGDRegressor? 

Parameters  

----------  

loss : str, 'squared_loss' or 'huber' ... 

... 

penalty : str, 'l2' or 'l1' or 'elasticnet'  

... 

 



Regularization 

AACIMP Summer School. 

August, 2012 

𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2 

ℓ2-penalty ℓ2-loss 



Ridge regression 

 

argmin𝒘
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2 

 

𝒘 = 𝑿𝑇𝑿 + 𝜆 𝑰 −1𝑿𝑇𝒚 
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𝑰 =

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

 



Ridge regression 

 

argmin𝒘
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘∗

2 

 

𝒘 = 𝑿𝑇𝑿 + 𝜆 𝑰∗
−1𝑿𝑇𝒚 
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𝑰∗ =

𝟎 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

 
The bias term 𝑤0 is 

usually not penalized. 
 



Exercise 

 

 

Derive an SGD algorithm  

for Ridge Regression. 
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Effects of Regularization 
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Quiz 

 OLS linear regression searches for a _______ 

model that has the best _________. 

 

 Analytic solution for OLS regression: 

𝒘 = _________ 

 

 Stochastic gradient solution for OLS 

regression: 

𝚫𝒘 = _________ 
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Quiz 

 Large number of model parameters and/or 

small data may lead to ___________. 

 

 We address overfitting by __________. 

 

 “Ridge regression” means __-loss and ___-

penalty. 

 Analytic solution for Ridge regression: 

𝒘 = _________ 
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Quiz 

 As we increase regularization strength (i.e. 

increase 𝜆), the training error _________. 

 

 

 … and the test error ________. 
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Questions? 
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