

Machine Learning: The Probabilistic Perspective

Konstantin Tretyakov

http://kt.era.ee

AACIMP 2012 August 2012

Software Technology and Applications Competence Center

- Machine learning is important and interesting
- ▶ The general concept:

Fitting models to data

So far...

- Machine learning is important and interesting
- ▶ The general concept:

Fitting models to data

Optimization

Probability Theory

So far...

- Instance-based methods
- Tree learning methods
- The "soul" of machine learning:

 $\operatorname{argmin}_{\boldsymbol{w}} \operatorname{Error}(\operatorname{Data}, \boldsymbol{w}) + \lambda \operatorname{Complexity}(\boldsymbol{w})$

- Particular models:
 - ▶ OLS regression (ℓ_2 -loss, 0-penalty regression)
 - ▶ Ridge regression (ℓ_2 -loss, ℓ_2 -penalty regression)

- Analytic vs iterative optimization
- Batch vs on-line optimization

Training / Test sets, cross-validation

Why should the model, tuned on the training set, generalize to the test set?

Learning purely from data is, in general, impossible

X	Y	Output
0	0	False
0		True
1	0	True
I	I	?

Learning purely from data is, in general, impossible

Is it good or bad?

What should we do to enable learning?

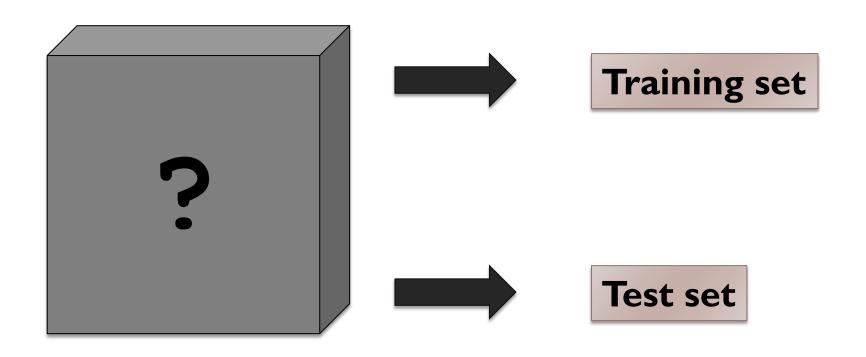
Learning purely from data is, in general, impossible

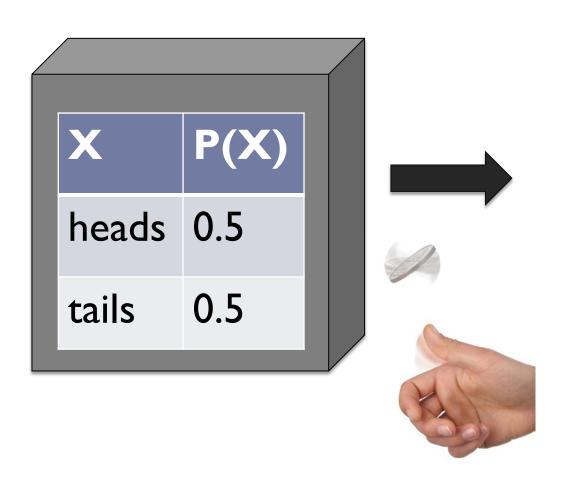
- Is it good or bad?
 - Good for cryptographers, bad for data miners
- What should we do to enable learning?
 - Introduce assumptions about data ("inductive bias"):
 - I. How does existing data relate to the future data?
 - 2. What is the system we are learning?

Learning purely from data is, in general, impossible

- Is it good or bad?
 - Good for cryptographers, bad for data miners
- What should we do to enable learning?
 - Introduce assumptions about data ("inductive bias"):
 - How does existing data relate to the future data?
 - 2. What is the system we are learning?

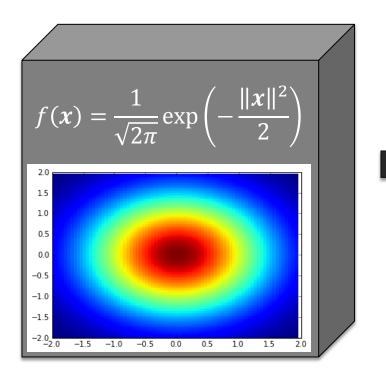
How does existing data relate to future data?

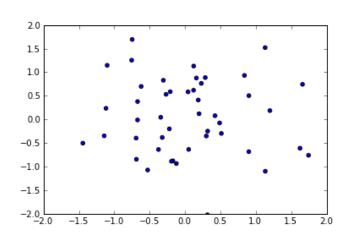


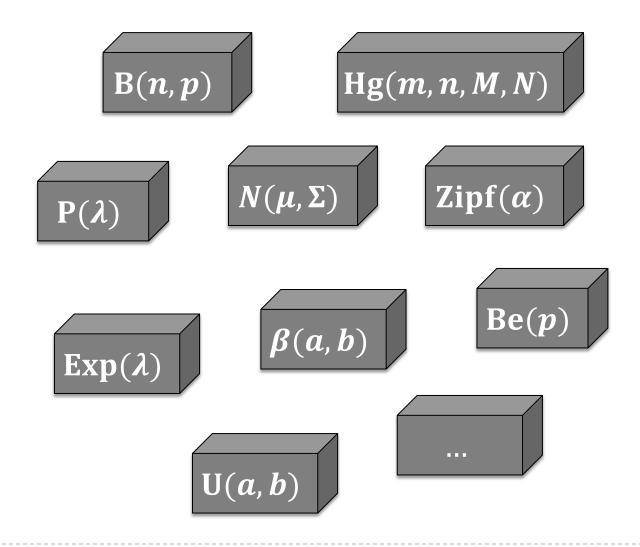


heads, heads, tails, heads, tails,

- - -







V • T • E Probability distributions [hide] [hide] Discrete univariate with finite support Benford · Bernoulli · Beta-binomial · categorical · hypergeometric · Poisson binomial · Rademacher · discrete uniform · Zipf · Zipf-Mandelbrot [hide] Discrete univariate with infinite support beta negative binomial · Boltzmann · Conway-Maxwell-Poisson · discrete phase-type · Delaporte · extended negative binomial · Gauss-Kuzmin · geometric · logarithmic · negative binomial · parabolic fractal · Poisson · Skellam · Yule-Simon · zeta Continuous univariate supported on a bounded interval, e.g. [0,1] [hide] Arcsine · ARGUS · Balding-Nichols · Bates · Beta · Beta rectangular · Irwin-Hall · Kumaraswamy · logit-normal · Noncentral beta · raised cosine · triangular · U-quadratic • uniform • Wigner semicircle Continuous univariate supported on a semi-infinite interval, usually [0,∞) [hide] Benini · Benktander 1st kind · Benktander 2nd kind · Beta prime · Bose-Einstein · Burr · chi-squared · chi · Coxian · Dagum · Davis · Erlang · exponential · F · Fermi-Dirac · folded normal · Fréchet · Gamma · generalized inverse Gaussian · half-logistic · half-normal · Hotelling's T-squared · hyper-exponential · hypoexponential · inverse chi-squared (scaled-inverse-chi-squared) · inverse Gaussian · inverse gamma · Kolmogorov · Lévy · log-Cauchy · log-Laplace · log-logistic · log-normal · Maxwell-Boltzmann · Maxwell speed · Mittag-Leffler · Nakagami · noncentral chi-squared · Pareto · phase-type · Rayleigh · relativistic Breit-Wigner · Rice · Rosin-Rammler · shifted Gompertz · truncated normal · type-2 Gumbel · Weibull · Wilks' lambda Continuous univariate supported on the whole real line $(-\infty, \infty)$ [hide] Cauchy · exponential power · Fisher's z · generalized normal · generalized hyperbolic · geometric stable · Gumbel · Holtsmark · hyperbolic secant · Landau · Laplace · Linnik · logistic · noncentral t · normal (Gaussian) · normal-inverse Gaussian · skew normal · slash · stable · Student's t · type-1 Gumbel · variance-gamma · Voigt Continuous univariate with support whose type varies [hide] generalized extreme value • generalized Pareto • Tukey lambda • g-Gaussian • g-exponential • shifted log-logistic Mixed continuous-discrete univariate distributions [hide] rectified Gaussian Multivariate (joint) [hide] Discrete: Ewens · multinomial · Dirichlet-multinomial · negative multinomial Continuous: Dirichlet · Generalized Dirichlet · multivariate normal · Multivariate stable · multivariate Student · normal-scaled inverse gamma · normal-gamma Matrix-valued: inverse matrix gamma · inverse-Wishart · matrix normal · matrix t · matrix gamma · normal-inverse-Wishart · normal-Wishart · Wishart Directional [hide] Univariate (circular) directional: Circular uniform · univariate von Mises · wrapped normal · wrapped Cauchy · wrapped exponential · wrapped Lévy Bivariate (spherical): Kent · Bivariate (toroidal): bivariate von Mises Multivariate: von Mises-Fisher · Bingham [hide] Degenerate and singular Degenerate: discrete degenerate · Dirac delta function Singular: Cantor **Families** [hide]

$$(10 + \sin(N(0,2) \cdot B(0.1)))$$

$$F(U(0,1))$$

Probability theory

```
from numpy.random import beta, binomial, chisquare, dirichlet, exponential, f, gamma, geometric, gumbel, hypergeometric, ...
```

```
>>> numpy.random.seed(1)
>>> binomial(10, 0.2)
... 2
```



```
from scipy.stats.distributions import beta,
binom, chisquare, ...
>>> numpy.random.seed(1)
>>> X = binom(10, 0.2)
>>> X.rvs()
>>> X.pmf(2), X.cdf(2), X.mean(), X.std(), ...
```


What is your height?

What is your height?

Is it a fixed number?

What is your height?

Is it a fixed number?

- Frequentist: **Yes, it is**, we just don't know it precisely.
- Bayesian: No, it is not.
 The result is a distribution.

Everything is Probabilistic?

VINNERS TARENTE

What is your height?

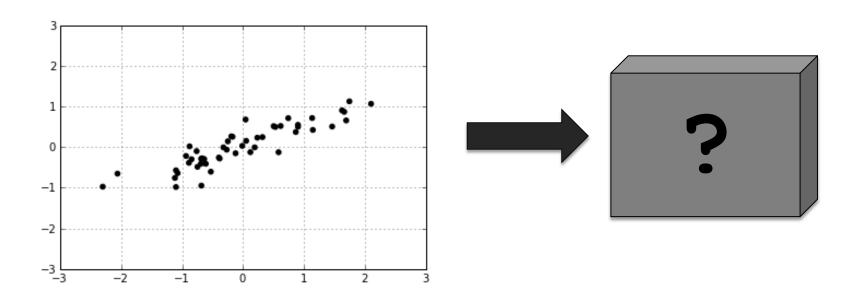
Is it a fixed number?

- Frequentist: **Yes, it is**, we just don't know it precisely.
- Bayesian: No, it is not.
 The result is a distribution.

In any case, we need probabilistic reasoning.

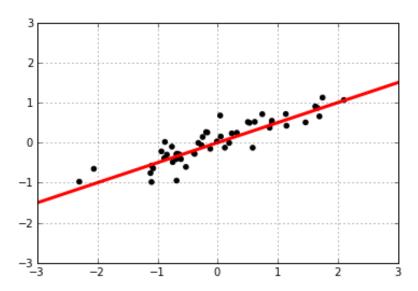
Statistics

▶ How do we infer a probabilistic model based on data?



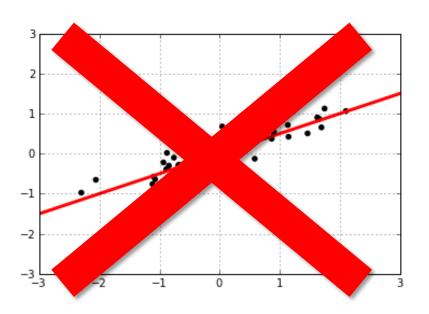
Statistics

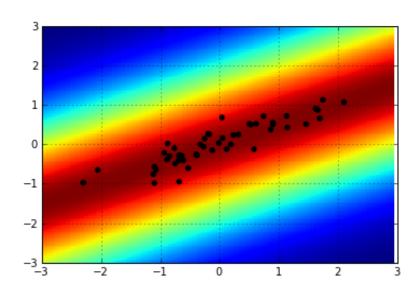
How do we infer a probabilistic model based on data?



Statistics

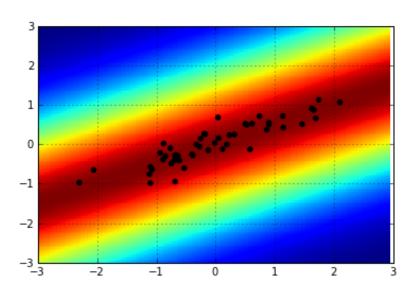
▶ How do we infer a probabilistic model based on data?





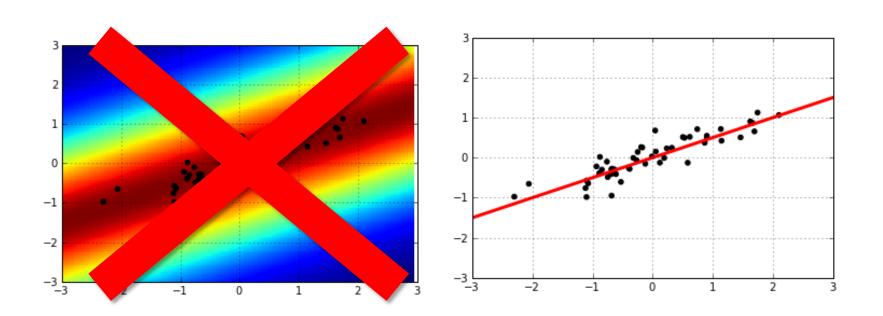
Decision theory

How do we use a probabilistic model to predict?



Decision theory

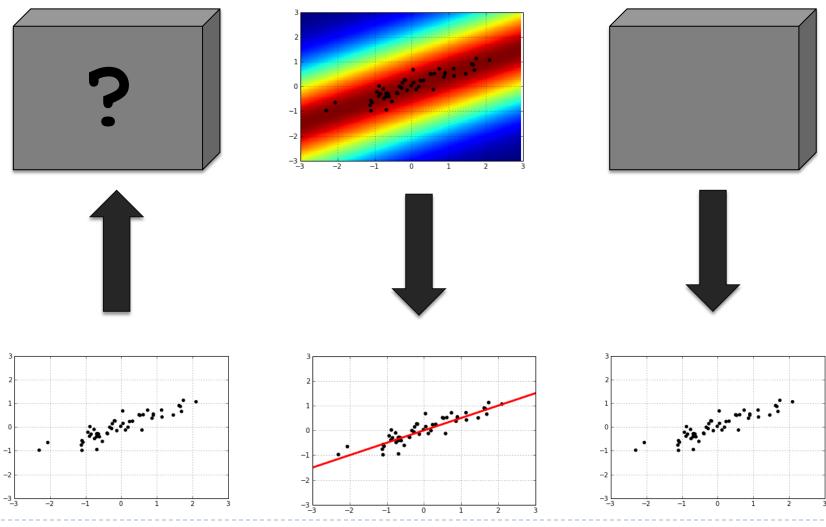
▶ How do we use a probabilistic model to predict?



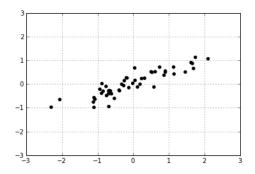
Model, trained on the training set might work well on the test set because:

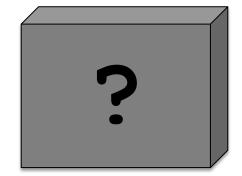
- ▶ Because we **assume** a single underlying mechanism.
- Because we use statistical inference to infer the mechanism.
- Because we use decision theory to produce optimal decisions.

Quiz

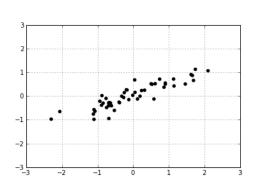


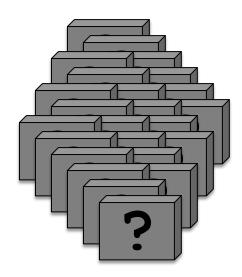
AACIMP Summer School. August, 2012

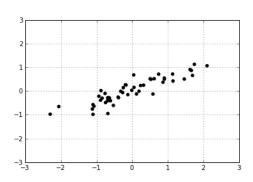


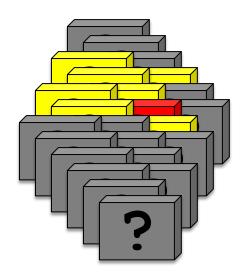


Space of candidate models

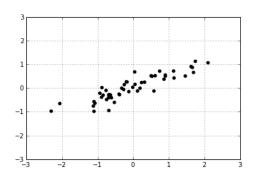






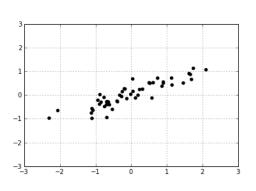


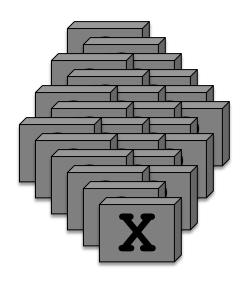
Hypothesis testing



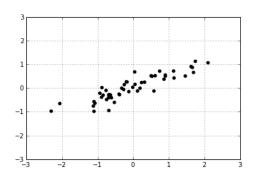
or not?

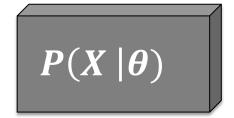
Model selection



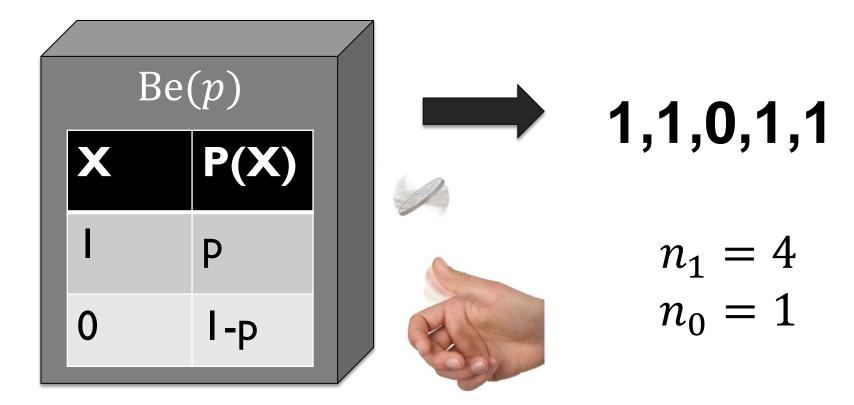


Parameter inference





Biased coin



Maximum Likelihood Estimation

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.5)
 - Data: 1,1,0,1,1
 - Likelihood: ?

Maximum Likelihood Estimation Maximum Likelihood Estimation

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.5)
 - Data: 1,1,0,1,1
 - Likelihood: $0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 = 2^{-5}$

0.03125

Maximum Likelihood Estimation (1932)

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.2)
 - Data: 1,1,0,1,1
 - Likelihood: ?

Maximum Likelihood Estimation Maximum Likelihood Estimation

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.2)
 - Data: 1,1,0,1,1
 - Likelihood: $0.2 \cdot 0.2 \cdot 0.8 \cdot 0.2 \cdot 0.2 = 0.2^4 \cdot 0.8$

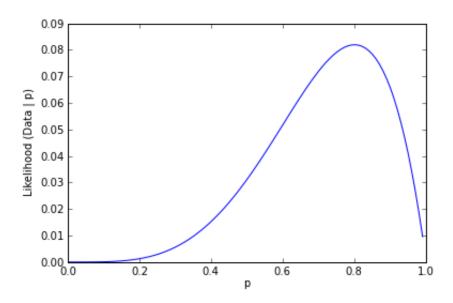
0.00128

Maximum Likelihood Estimation

RETU ÜLIKOOL SISNUS 1632 KINNVERS, TAS TARKIN

Example:

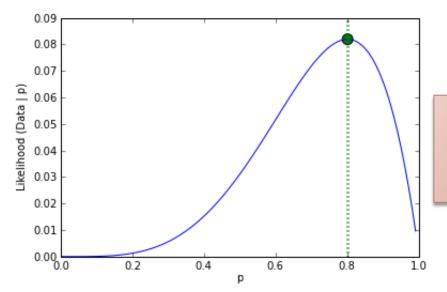
- Model: Be(p)
- Data: 1,1,0,1,1
- Likelihood: $p \cdot p \cdot (1-p) \cdot p \cdot p = p^{n_1}(1-p)^{n_0}$



Maximum Likelihood Estimation

Example:

- Model: Be(p)
- Data: 1,1,0,1,1
- Likelihood: $p \cdot p \cdot (1-p) \cdot p \cdot p = p^{n_1}(1-p)^{n_0}$



$$\hat{p} = \frac{n_1}{n_0 + n_1}$$

Maximum Likelihood Estimation:

argmax_{Model} Pr(Data | Model)

- You are on a trip in an exotic country and you meet a person who happens to be from Ukraine.
- Is he a member of the Rada?

- Data: "X is from Ukraine"
- Models:
 - "X is a member of Rada",
 - "X is not a member of Rada"

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of Rada",
 - "X is not a member of Rada"

Likelihoods:

- P(X is from Ukraine | X is a member of Rada) =
- ▶ P(X is from Ukraine | X is not a member of Rada) =

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of Rada",
 - "X is not a member of Rada"
- Likelihoods:
 - ▶ P(X is from Ukraine | X is a member of Rada) = 1
 - P(X is from Ukraine | X is not a member of Rada) = $\frac{45}{7000}$

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of Rada",

MLE treats all candidate models as equal and can thus overfit

- ► P(X is from Ukraine | X is a member of Rada) = 1
- P(X is from Ukraine | X is not a member of Rada) = $\frac{45}{7000}$

Maximum A-posteriori Estimation

Maximum Likelihood Estimate (MLE):

argmax_{Model} Pr(Data | Model)

Maximum A-posteriori Estimate (MAP):

argmax_{Model} Pr(||Data)

argmax_{Model} Pr(Model|Data)

argmax_{Model} Pr(Model|Data)

 $argmax_{Model} \frac{Pr(Model, Data)}{Pr(Data)}$

argmax_{Model} Pr(Model, Data)

argmax_{Model} Pr(Model|Data)

 $argmax_{Model} \frac{Pr(Model, Data)}{Pr(Data)}$

argmax_{Model} Pr(Model, Data)

argmax_{Model} Pr(Data | Model) · Pr(Model)

MAP Estimation

argmax_{Model} Pr(Model|Data)

argmax_{Model} Pr(Model, Pr(Data) Model posterior

argmax_{Model} Pr(Model, Data)

argmax_{Model}

Pr(Data | Model) Pr(Model)

Likelihood

Model prior

Maximum Likelihood Estimate (MLE):

argmax_{Model} Pr(Data | Model)

Maximum A-posteriori Estimate (MAP):

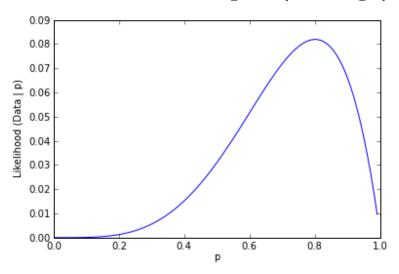
argmax_{Model} Pr(Data | Model) Pr(Model)

MAP Estimation

▶ Model: Be(p)

Data: 1,1,0,1,1

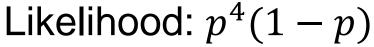
Likelihood: $p^4(1-p)$

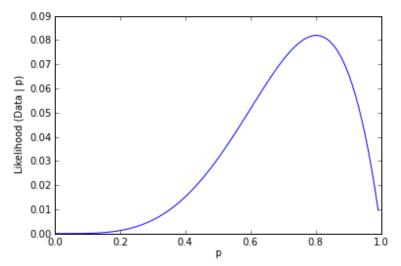


MAP Estimation

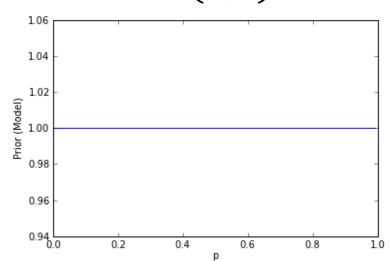
▶ Model: Be(p)

Data: 1,1,0,1,1





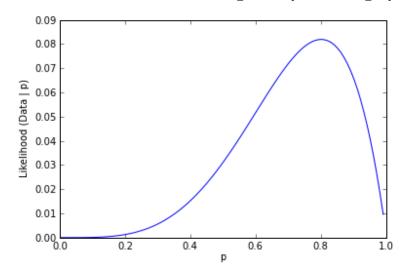
Prior: U(0,1)



$$\hat{p}_{MAP} = \hat{p}_{MLE} = \frac{n_1}{n_0 + n_1}$$

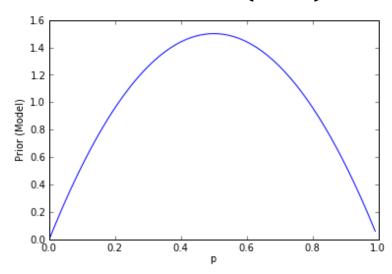
Model: Be(p)

Likelihood: $p^4(1-p)$

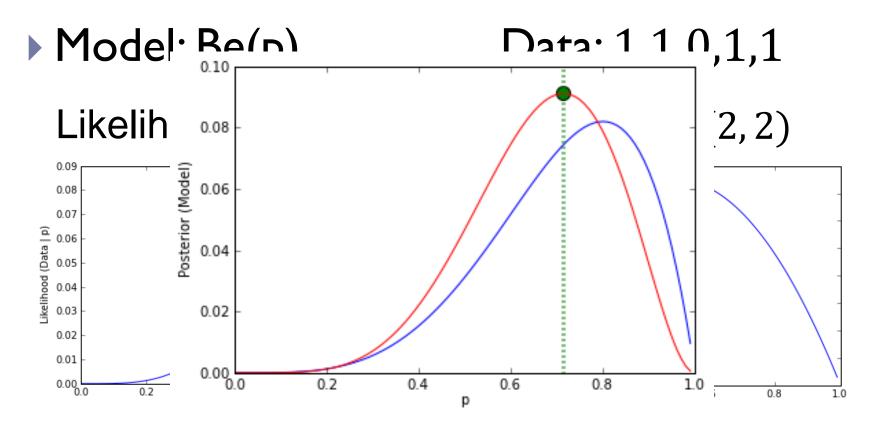


Data: 1,1,0,1,1

Prior: Beta(2, 2)



MAP Estimation



$$\hat{p}_{MAP} = \frac{n_1 + 1}{n_0 + n_1 + 2}$$

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

MAP Estimation

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Model} log Pr(Data|Model) + log Pr(Model)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Mode} log Pr(Data|Model) + log Pr(Model)

MAP Estimation

argmax_{Model} Pr(Data | Model) · Pr(Model)

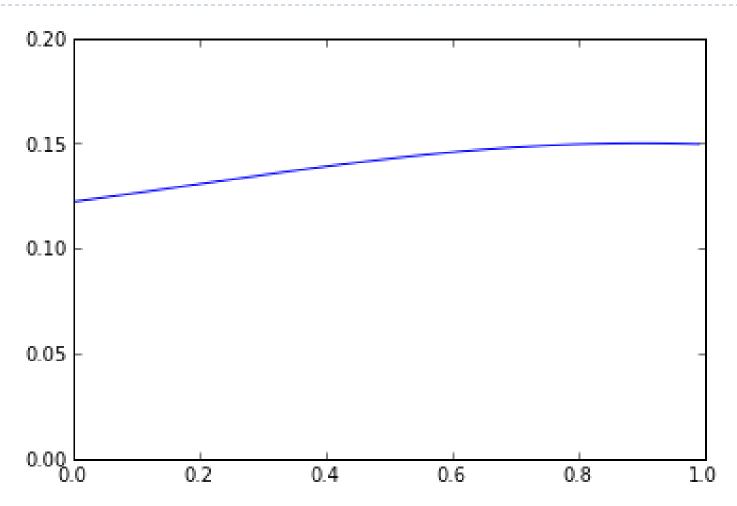
argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Mode} log Pr(Data|Model) + log Pr(Model)

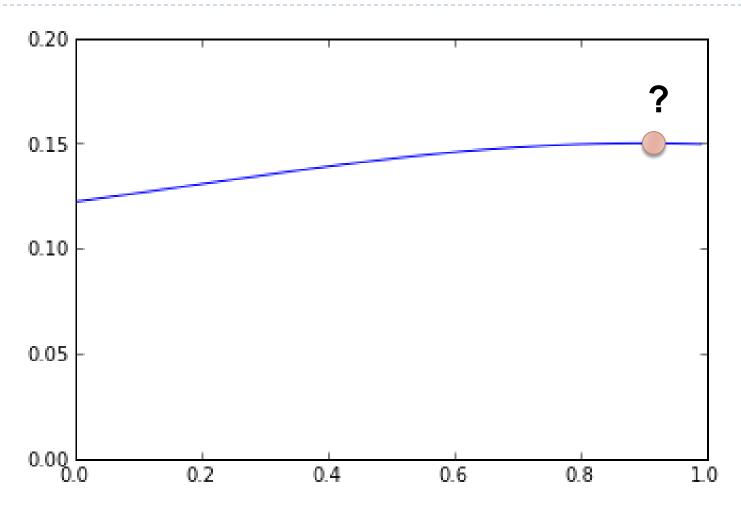
 $\operatorname{argmin}_{w} \operatorname{Error}(\operatorname{Data}, w) + \operatorname{Complexity}(w)$

Problems of MAP estimation

Problems of MAP estimation

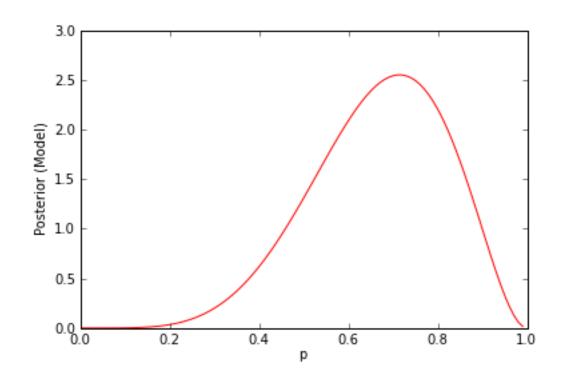


Problems of MAP estimation



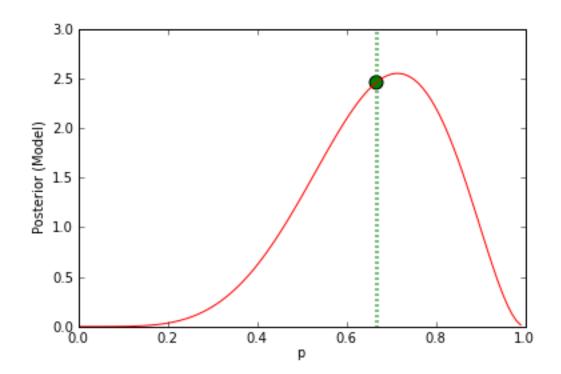
Bayesian estimation

Pick the model with minimal expected risk $E(Model \mid Data)$



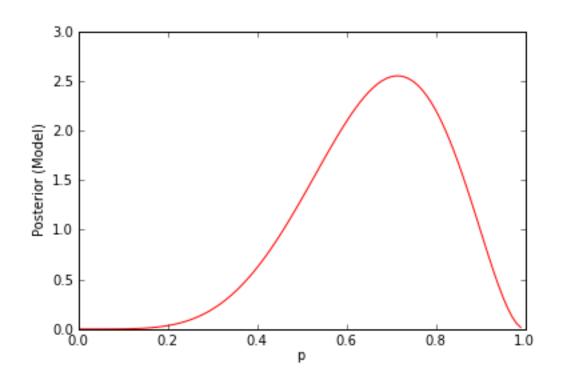
Bayesian estimation

Pick the model with minimal expected risk $E(Model \mid Data)$



Bayesian estimation +

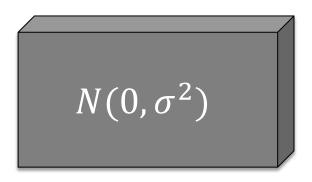
Use the full posterior distribution Pr(Model | Data)

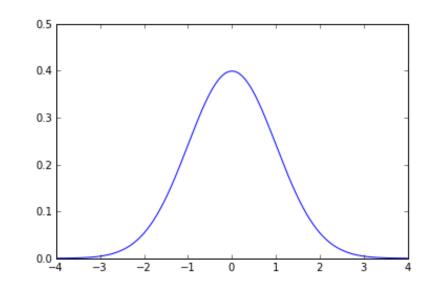


$$\hat{p} \pm \frac{1}{\sqrt{N}}$$

▶ Three major model inference methods are:

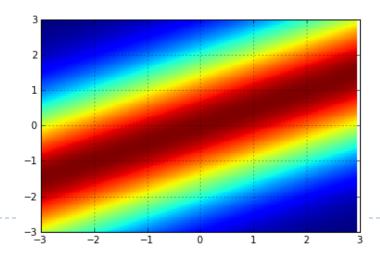
Normal distribution





$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{x^2}{\sigma^2}\right)$$

$$Y = \mathbf{w}^T \mathbf{x} + N(0, \sigma^2)$$



$$Y = \boldsymbol{w}^T \boldsymbol{x} + N(0, \sigma^2)$$

$$Y = \mathbf{w}^T \mathbf{x} + N(0, \sigma^2)$$

$$e = Y - \mathbf{w}^T \mathbf{x} \sim N(0, \sigma^2)$$

$$Y = \mathbf{w}^T \mathbf{x} + N(0, \sigma^2)$$

$$e = Y - \mathbf{w}^T \mathbf{x} \sim N(0, \sigma^2)$$

$$\Pr((x,y)|\mathbf{w},\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\frac{e^2}{\sigma^2}\right)$$

$$\Pr((x_1, y_1), (x_2, y_2), ..., (x_n, y_n) | \mathbf{w}, \sigma^2)$$

$$= \prod_{i} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$\Pr((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) | \boldsymbol{w}, \sigma^2)$$

$$\propto \prod_{i} \exp\left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$\log \Pr((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) | \mathbf{w}, \sigma^2)$$

$$\propto \log \prod_{i} \exp\left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$\log \Pr((x_1, y_1), (x_2, y_2), ..., (x_n, y_n) | \boldsymbol{w}, \sigma^2)$$

$$\propto \log \prod_{i} \exp\left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$= \sum_{i} \left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$\log \Pr((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n) | \boldsymbol{w}, \sigma^2)$$

$$\propto \log \prod_{i} \exp\left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$= \sum_{i} \left(-\frac{1}{2} \frac{e_i^2}{\sigma^2}\right)$$

$$= -\frac{1}{2\sigma^2} \sum_{i} e_i^2$$

MLE and OLS

$$\operatorname{argmax}_{\mathbf{w}} \operatorname{LogLikelihood}(\operatorname{Data}, \mathbf{w}) = \operatorname{argmin}_{\mathbf{w}} \sum_{i} e_{i}^{2}$$

Linear Regression + MAP

 $\Pr(\mathbf{w}|\text{Data}) \propto \Pr(\text{Data}|\mathbf{w}) \cdot \Pr(\mathbf{w})$

$$-\sum_{i}e_{i}^{2}$$

$$-\sum_{i}e_{i}^{2}$$

$$\Pr(w_j) \propto \exp\left(-\frac{w_j^2}{2\alpha^2}\right)$$

log Pr(w|Data) ∝ log Pr(Data|w) + log Pr(w)

$$-\sum_{i}e_{i}^{2}$$

$$\Pr(\mathbf{w}) \propto \prod_{i} \exp\left(-\frac{w_{i}^{2}}{2\alpha^{2}}\right)$$

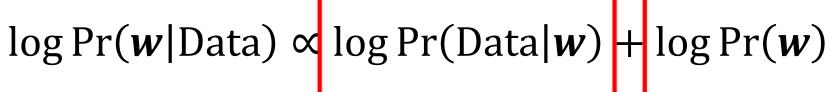
$$-\sum_{i}e_{i}^{2}$$

$$\log \Pr(\mathbf{w}) \propto \sum_{j} -\frac{w_{j}^{2}}{2\alpha^{2}}$$

$$-\sum_{i}e_{i}^{2}$$

$$\log \Pr(\mathbf{w}) \propto -\sum_{i} w_{j}^{2}$$

Linear Regression



$$-\sum_{i}e_{i}^{2}$$
 $-\sum_{i}w_{j}^{2}$

$$\log \Pr(\mathbf{w}) \propto -\sum_{i} w_{j}^{2}$$

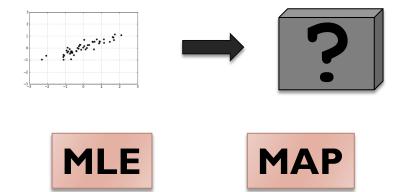
Linear Regression

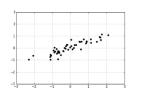
$$\log \Pr(\mathbf{w}|\mathrm{Data}) \propto \log \Pr(\mathrm{Data}|\mathbf{w}) + \log \Pr(\mathbf{w})$$

$$\log \Pr(\mathbf{w})$$

$$-\sum_{i}e_{i}^{2}$$
 $-\sum_{j}w_{j}^{2}$

Penalty Model prior



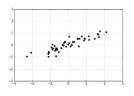


MLE

MAP

Loss ⇔ Error distribution

Penalty Model prior



MLE

MAP

Loss ⇔ Error distribution

Penalty ⇔ **Model prior**

OLS Regression

Ridge Regression



MLE

MAP

Loss ⇔ Error distribution

Loss ⇔ Error distribution

+

OLS Regression

Ridge Regression

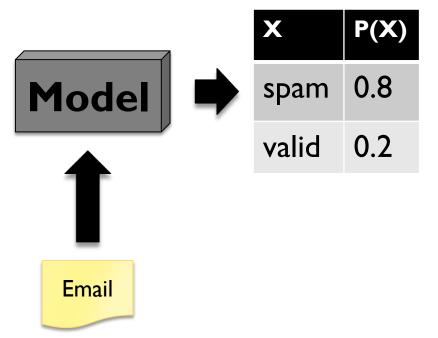
ℓ₂-loss/penalty ⇔ Normal distribution

School.

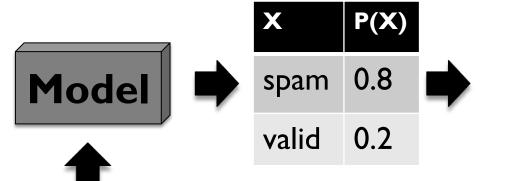
Probability for modeling

> Statistics for estimation

Decision theory for prediction

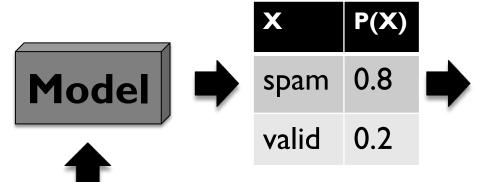


Decision



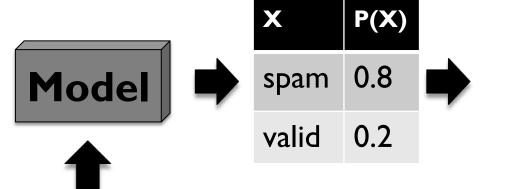
X	P(X)	SPAM	VALID
spam	0.8		
valid	0.2		

Decision



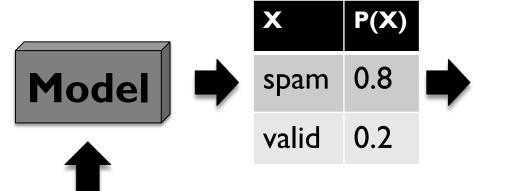
X	P(X)	SPAM	VALID
spam	0.8	0	I
valid	0.2	5	0

Decision



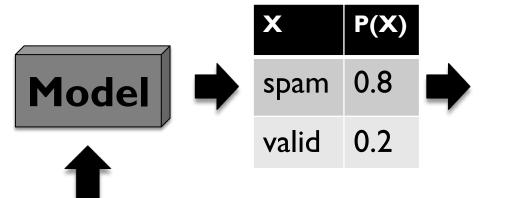
X	P(X)	SPAM	VALID
spam	0.8	0	I
valid	0.2	5	0
Expected Risk			

Decision



X	P(X)	SPAM	VALID
spam	0.8	0	I
valid	0.2	5	0
Expected Risk		I	0.8

Decision



X	P(X)	SPAM	VALIE)
spam	0.8	0	I	
valid	0.2	5	0	
Expecte	d Risk	I	0.8	
	-			

Expected Risk (Supervised Learning)

$$R(\hat{y}|x) = \sum_{y} \Pr(y|x)\ell(\hat{y},y)$$

Expected Risk (Supervised Learning)

$$P(\hat{y}|y) = \sum_{\substack{\text{Email} \\ y \text{ VALID}}} Pr(y|y) \ell(\hat{y},y)$$

$$pr(y|y) \ell(\hat{y},y)$$

$$pr$$

Expected Risk (Supervised Learning)

$$P(\hat{y}|y) = \sum_{\text{Email}} Pr(y|y) \ell(\hat{y},y)$$

$$\text{SPAM, VALID}$$

$$y \text{Model}$$

$$y \text{spam, valid}$$

$$R(\hat{y}|x) = \int_{y} \ell(\hat{y}, y) dF(y|x)$$

Optimal classifier:

For a given x and a conditional probabilistic model Pr(y|x)

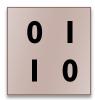
predict \hat{y} , that has the smallest expected risk.

Optimal classifier:

For a given x and a conditional probabilistic model Pr(y|x)

predict \hat{y} , that has the smallest expected risk.

For symmetric risk ℓ , this corresponds to picking the option with the highest probability.



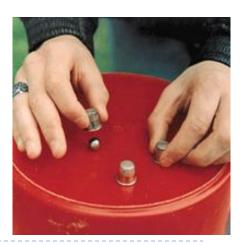
Summary

Probability for modeling

Statistics for estimation

Decision theory for prediction

Bayesian Classifier



AACIMP Summer School. August, 2012

The Tennis Dataset

Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Shall we play tennis today?

PlayTennis
No
No
Yes
Yes
Yes
No
Yes
No
Yes
No

Play	/Tenni
	No
	No
	Yes
	Yes
	Yes
	No
	Yes
	No
	Yes
	No

Estimate a probabilistic model and predict:

$$Pr(Yes) = 9/14 = 0.64$$

$$Pr(No) = 5/14 = 0.36$$

It's windy today. Tennis, anyone?

\A/'	5) T :
Wind	PlayTennis
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No

It's windy today. Tennis, anyone?

Wind	PlayTennis
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No

$$Pr(Weak) = 8/14$$

$$Pr(Strong) = 6/14$$

$$Pr(Yes | Weak) = 6/8$$

$$Pr(No | Weak) = 2/8$$

$$Pr(Yes | Strong) = 3/6$$

$$Pr(No | Strong) = 3/6$$

Humidity	Wind	PlayTennis
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

$$Pr(High, Weak) = 4/14$$

$$Pr(Yes | High, Weak) = 2/4$$

$$Pr(No | High, Weak) = 2/4$$

$$Pr(High,Strong) = 3/14$$

$$Pr(Yes | High, Strong) = 1/3$$

$$Pr(No | High, Strong) = 2/3$$

The Bayesian Classifier

In general:

Estimate from data:

$$Pr(Class | x_1, x_2, x_3, ...)$$

2. For a given instance $(x_1, x_2, x_3, ...)$ predict class whose conditional probability is greater:

Problem

We need exponential amount of data

Humidity	Wind	PlayTennis
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

$$Pr(High, Weak) = 4/14$$

$$Pr(Yes | High, Weak) = 2/4$$

$$Pr(No | High, Weak) = 2/4$$

$$Pr(High,Strong) = 3/14$$

$$Pr(Yes | High, Strong) = 1/3$$

$$Pr(No | High, Strong) = 2/3$$

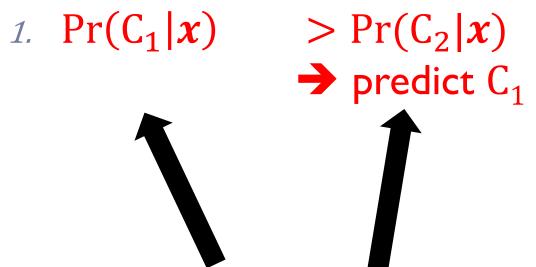
Naïve Bayes Classifier

To scale beyond 2-3 attributes, use a hack:

Assume that attributes are independent within each class:

$$Pr(x_1, x_2, x_3 | Class)$$

= $Pr(x_1|Class)Pr(x_2|Class)Pr(x_3|Class) ...$



$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

1.
$$Pr(C_1|x)$$
 > $Pr(C_2|x)$
 \rightarrow predict C_1

2. $\frac{Pr(C_1) Pr(x|C_1)}{Pr(x)}$ > $\frac{Pr(C_2) Pr(x|C_2)}{Pr(x)}$
 \rightarrow predict C_1

Naïve Bayes Classifier

- 1. $Pr(C_1|x) > Pr(C_2|x)$
 - \rightarrow predict C_1
- 2. $\frac{\Pr(C_1)\Pr(x|C_1)}{\Pr(x)} > \frac{\Pr(C_2)\Pr(x|C_2)}{\Pr(x)}$
 - \rightarrow predict C_1
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$ predict C_1

- 1. $Pr(C_1|x) > Pr(C_2|x)$
 - \rightarrow predict C_1
- 2. $\frac{\Pr(C_1)\Pr(x|C_1)}{\Pr(x)} > \frac{\Pr(C_2)\Pr(x|C_2)}{\Pr(x)}$
 - \rightarrow predict C_1
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$ predict C_1
- 4. $Pr(C_1) \cdot Pr(x_1|C_1) Pr(x_2|C_1) ... Pr(x_m|C_1) > Pr(C_2) \cdot Pr(x_1|C_2) Pr(x_2|C_2) ... Pr(x_m|C_2)$ → predict C_1

1.
$$Pr(C_1|x) > Pr(C_2|x)$$

- \rightarrow predict C_1
- 2. $\frac{\Pr(C_1)\Pr(x|C_1)}{\Pr(x)} > \frac{\Pr(C_2)\Pr(x|C_2)}{\Pr(x)}$
 - \rightarrow predict C_1
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$
 - → predict C
- 4. $\Pr(C_1) \cdot \Pr(x_1|C_1) \Pr(x_2|C_1) ... \Pr(x_m|C_1) > \Pr(C_2) \cdot \Pr(x_1|C_2) \Pr(x_2|C_2) ... \Pr(x_m|C_2)$
 - predict C

Works for both discrete and continuous attributes.

▶ The goods:

- Easy to implement, efficient
- Won't overfit, intepretable
- Works better than you would expect (e.g. spam filtering)

The bads

- "Naïve", linear
- Usually won't work well for too many classes
- Not a good probability estimator

Naïve Bayes Classifier

Quiz

MLE:

MAP:

Gaussian distribution:

$$f(x) = const \times exp(\underline{\hspace{1cm}})$$

Quiz

Bayesian classifier has optimal

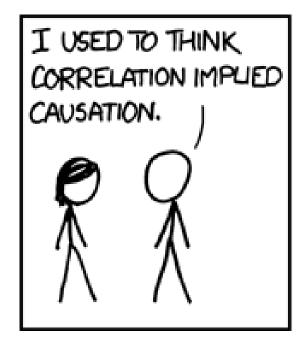
▶ Naïve Bayesian classifier assumption:

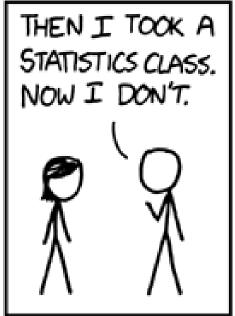
- $\Pr(C|x_1, x_2) = \Pr(C|x_1) \Pr(C|x_2)$
- $\Pr(x_1, x_2 | C) = \Pr(x_1 | C) \Pr(x_2 | C)$
- $\Pr(C_1, C_2 | x) = \Pr(C_1 | x) \Pr(C_2 | x)$
- $\Pr(x|C_1, C_2) = \Pr(x|C_1) \Pr(x|C_2)$

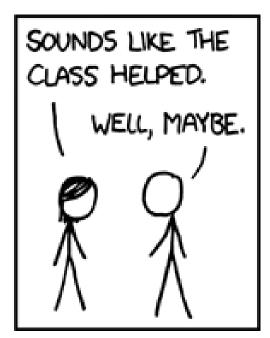
All machine learning methods we have considered so far rely on MLE or MAP

- Yes
- No

Questions?







http://xkcd.com/552/

