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Perceptron 

 Start with arbitrary (𝒘,𝑤0) 

 

 Find a misclassified example (𝒙𝑖 , 𝑦𝑖) 
 i.e. sign 𝒘𝑇𝒙𝑖 +𝑤0 ≠ 𝑦𝑖 
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Gaussian (RBF) kernel 

 

𝐾 𝒙, 𝒚 =
= exp(−𝛾‖𝒙 − 𝒚‖2)       
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Exponential kernel 

 

𝐾 𝒙, 𝒚 = exp −
𝒙 − 𝒚
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Kernels 
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Structured data kernels 

 String kernels 

 P-spectrum kernels 

 All-subsequences kernels 

 Gap-weighted subsequences kernels 

 … 

 Graph & tree kernels 

 Co-rooted subtrees 

 All subtrees 

 Random walks 

 …  
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Kernel 

 A function 𝐾(𝒙, 𝒚) is a kernel, if 

 

𝐾 𝒙, 𝒚 = 𝜙 𝒙 , 𝜙 𝒚  

 

for some feature map 𝜙. 
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Kernel matrix 

 For a given kernel function  𝐾 and a finite 

dataset (𝒙1, 𝒙2, … , 𝒙𝑛) the 𝑛 × 𝑛 matrix 

𝑲𝑖𝑗 ≔ 𝐾 𝒙𝑖 , 𝒙𝑗  

  is called the kernel matrix.  
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Kernel matrix 

 Let 𝑿 be the data matrix, then 

𝑲 = 𝑿𝑿𝑇 

is the kernel matrix for the linear kernel 

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 
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Kernel matrix 

 Let 𝑿 be the data matrix, then 

𝑲 = 𝑿𝑿𝑇 

is the kernel matrix for the linear kernel 

𝐾 𝒙, 𝒚 = 𝒙𝑇𝒚 

 

 Let 𝜙 be a feature mapping. Then* 

𝑲 = 𝜙 𝑿 𝜙 𝑿 𝑇 

is the kernel matrix for the corresponding 

kernel 𝐾 𝒙, 𝒚 = 〈𝜙 𝒙 , 𝜙 𝒚 〉. 
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Kernel theorem 

 Not every function K is a kernel! 

e. g.  𝐾 𝑥, 𝑦 = −1 is not 

 

 Not every 𝑛 × 𝑛 matrix is a Kernel matrix! 

May 15, 2012 



Kernel theorem 

 Theorem: 

𝐾 is a kernel function ⇔ 𝐾 is symmetric positive 

semidefinite 

 

 A function is positive semidefinite iff for any 

finite dataset {𝒙1, 𝒙2, … , 𝒙𝑛} the corresponding 

kernel matrix is positive semidefinite. 
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Kernel closure 
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Kernel closure 
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Feature space concatenation 



Kernel closure 
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Feature space scaling 



Kernel closure 
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Feature space tensor product 



Kernel closure 
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Feature map composition 
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Dual representation 

Consider the linear span of {𝒙1, … , 𝒙𝑛}, i.e. the 

set of all vectors 𝒘 of the form 

 

𝒘 = 𝛼𝑖𝒙𝑖
𝑖

= 𝑿𝑇𝜶 

AACIMP Summer School. 
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Dual representation 

Whenever 

 

𝒘 = 𝛼𝑖𝒙𝑖
𝑖

= 𝑿𝑇𝜶 

 

we shall refer to 𝜶 as the dual representation 

of 𝒘. 
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Dual coordinates 

Let  

𝒘 = 𝐗𝑇𝜶 
𝒖 = 𝐗T𝜷 

Then 

2𝒘 = 
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Dual coordinates 

Let  

𝒘 = 𝐗𝑇𝜶 
𝒖 = 𝐗T𝜷 
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2𝒘 = 𝐗T 2𝜶  
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Dual coordinates 

Let  

𝒘 = 𝐗𝑇𝜶 
𝒖 = 𝐗T𝜷 

Then 

2𝒘 = 𝐗T 2𝜶  
𝒘+ 𝒖 = 𝐗T 𝜶 + 𝜷  
𝒘,𝒖 = 𝒘𝑇𝒖 = 𝜶𝑇𝐗𝐗𝑇𝜷 = 𝜶𝑇𝑲𝜷 
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Dual coordinates 

Let  

𝒘 = 𝐗𝑇𝜶 
𝒖 = 𝐗T𝜷 

Then 

2𝒘 = 𝐗T 2𝜶  
𝒘+ 𝒖 = 𝐗T 𝜶 + 𝜷  
𝒘,𝒖 = 𝒘𝑇𝒖 = 𝜶𝑇𝐗𝐗𝑇𝜷 = 𝜶𝑇𝑲𝜷 

𝒘− 𝒖 2 = 
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Dual coordinates 
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Dual coordinates 
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So what? 
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The Representer Theorem 

The SVM weight vector lies in the span of the 

data points, i.e. 

 

𝒘 = 𝛼𝑖𝒙𝑖
𝑖

= 𝑿𝑇𝜶 

for some 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝑛
𝑇 
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The Representer Theorem 

The SVM weight vector lies in the span of the 

data points, i.e. 

 

𝒘 = 𝛼𝑖𝒙𝑖
𝑖

= 𝑿𝑇𝜶 

for some 𝜶 = 𝛼1, 𝛼2, … , 𝛼𝑛
𝑇 

AACIMP Summer School. 

August, 2012 

• Easy to prove 

• Actually holds for pretty much any 

linear model with ℓ2-penalty. 



The Representer Theorem 
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Example 

 Recall OLS regression: 

 

𝒘 = _________ 
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Example 
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Example 

 Recall OLS regression: 

 

𝒘 = 𝑿+𝒚 

𝒘 = 𝑿𝑇 𝑿𝑿𝑇 +𝒚 

𝒘 = 𝑿𝑇[ 𝑿𝑿𝑇 +𝒚] 
𝒘 = 𝑿𝑇𝜶 
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Kernelization 

1. 𝒙𝑖 → 𝜙(𝒙𝑖) 
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Nonlinear feature mapping 



Kernelization 

1. 𝒙𝑖 → 𝜙(𝒙𝑖) 

2.  
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𝒘 = 𝛼𝑖𝜙(𝒙𝑖)

𝑖

 

Nonlinear feature mapping 

Dual representation 



Kernelization 

1. 𝒙𝑖 → 𝜙(𝒙𝑖) 

2.  
 

3.   

AACIMP Summer School. 
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𝑓 𝒛 = 𝒘,𝜙 𝒛 + 𝑤0 =  𝛼𝑖𝜙 𝒙𝑖
𝑖

, 𝜙 𝒛 + 𝑤0 =

= 𝛼𝑖〈𝜙 𝒙𝑖 , 𝜙 𝒛 〉

𝑖

+𝑤0

= 𝛼𝑖𝐾(𝒙𝑖 , 𝒛)

𝑖

+ 𝑤0 

𝒘 = 𝛼𝑖𝜙(𝒙𝑖)

𝑖
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Example 

 Recall OLS regression: 

 

𝒘 = 𝑿+𝒚 

𝒘 = 𝑿𝑇 𝑿𝑿𝑇 +𝒚 

𝒘 = 𝑿𝑇[ 𝑿𝑿𝑇 +𝒚] 
𝒘 = 𝑿𝑇𝜶 
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Example 

 Recall OLS regression: 

 

𝒘 = 𝑿+𝒚 

𝒘 = 𝑿𝑇 𝑿𝑿𝑇 +𝒚 

𝒘 = 𝑿𝑇[ 𝑿𝑿𝑇 +𝒚] 
𝒘 = 𝑿𝑇𝜶 

𝜶 = 𝑲+𝒚 = 𝑲−1𝒚 
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Kernelization: Summary 

 Take a linear learning algorithm 

𝑿, 𝒚 → 𝒘,𝑤0 

 

 Rewrite it to use only inner products of data 

points and return the dual representation of 𝒘 

𝑲, 𝒚 → 𝜶,𝑤0 

 

 Plug in any kernel and play!  

 Congratulations, you’ve got a nonlinear model! 
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Quiz 

The three ingredients of kernel methods: 

  __________ 

  __________ 

  __________ 

 

 Function/matrix 𝐾 is a kernel function/matrix 

iff it is __________ 

 Dual representation: ___ = ___ __ 
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Quiz 

 

Those algoritms have kernelized versions: 

 ___________________________ … 
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Questions? 


