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• Need to find cluster centers 𝒄𝒌. 
𝒄𝟏 = ? , 𝒄𝟐 = ? , … , 𝒄𝑲 =? 

 

• Introduce latent variables (one for each 𝒙𝒊) 
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• For fixed 𝒄𝒌 we can find optimal 𝒂𝒊 
 

 

• For fixed 𝒂𝒊 we can find optimal 𝒄𝒌. 
 

 

• Iterate to convergence. 
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Use feature vectors 

Use distance matrix 



Quiz 

 Fuzzy clustering means that _______ 

 

 K-means finds a set of cluster centers, which 

have the smallest ______________ 

 

 K-means can get stuck in a local minimum 

(Y/N)? 
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Canonical basis 

𝑥1
𝑥2
= 𝛼
1
0
+ 𝛽
0
1

 

AACIMP Summer School. 

August, 2012 



Alternative basis 

𝑥1
𝑥2
= 𝛼

0.9
−0.1

+ 𝛽
0.1
0.9

 

AACIMP Summer School. 

August, 2012 



Alternative basis 

𝑥1
𝑥2
= 𝛼

0.4
−0.6

+ 𝛽
0.6
0.4

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

1
0
0
0
⋮
0

+ 𝛼2

0
1
0
0
⋮
0

+⋯+ 𝛼𝑚

0
0
0
0
⋮
1

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

1
0
0
0
⋮
0

+ 𝛼2

0
1
0
0
⋮
0

+⋯+ 𝛼𝑚

0
0
0
0
⋮
1

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

0.0
0.1
0.1
0.2
⋮
0.0

+ 𝛼2

0.3
0.2
0.2
0.1
⋮
0.3

+ 𝛼𝑚

0.1
0.1
0.1
0.0
⋮
0.0

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

0.0
0.1
0.1
0.2
⋮
0.0

+ 𝛼2

0.3
0.2
0.2
0.1
⋮
0.3

+ 𝛼𝑚

0.1
0.1
0.1
0.0
⋮
0.0

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

1
0
0
0
⋮
0

+ 𝛼2

0
1
0
0
⋮
0

+⋯+ 𝛼𝑚

0
0
0
0
⋮
1

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

0.0
0.1
0.1
0.2
⋮
0.0

+ 𝛼2

0.3
0.2
0.2
0.1
⋮
0.3

+ 𝛼𝑚

0.1
0.1
0.1
0.0
⋮
0.0

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝑥1
𝑥2
𝑥3
𝑥4
…
𝑥100000

= 𝛼1

0.0
0.1
0.1
0.2
⋮
0.0

+ 𝛼2

0.3
0.2
0.2
0.1
⋮
0.3

+ 𝛼𝑚

0.1
0.1
0.1
0.0
⋮
0.0

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝒙 = 𝛼1𝒗𝟏 + 𝛼2𝒗𝟐 +⋯+ 𝛼𝑚𝒗𝒎 

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝒙 = 𝛼1𝒗𝟏 + 𝛼2𝒗𝟐 +⋯+ 𝛼𝑚𝒗𝒎 

 

𝒙 =
⋮ ⋮ … ⋮
𝒗𝟏
⋮
𝒗𝟐
⋮
…
𝒗𝒎
⋮

𝛼1
𝛼2
⋮
𝛼𝑚

 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝒙 = 𝛼1𝒗𝟏 + 𝛼2𝒗𝟐 +⋯+ 𝛼𝑚𝒗𝒎 

 

𝒙 = 𝑽𝜶 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝒙 = 𝛼1𝒗𝟏 + 𝛼2𝒗𝟐 +⋯+ 𝛼𝑚𝒗𝒎 

 

𝒙 = 𝑽𝜶 
𝜶 = ? 

AACIMP Summer School. 

August, 2012 



Linear Decomposition 

𝒙 = 𝛼1𝒗𝟏 + 𝛼2𝒗𝟐 +⋯+ 𝛼𝑚𝒗𝒎 

 

𝒙 = 𝑽𝜶 
𝜶 = 𝑽+𝒙 

AACIMP Summer School. 

August, 2012 



How do we find a good basis? 

AACIMP Summer School. 

August, 2012 



Linear projection 

AACIMP Summer School. 

August, 2012 



Linear projection 

AACIMP Summer School. 

August, 2012 



Linear projection 

AACIMP Summer School. 

August, 2012 



Linear projection 

AACIMP Summer School. 

August, 2012 



Idea: Maximize projection variance 

 For a point 𝒙𝑖 and a unit basis vector 𝒗 the 

length of projection of 𝒙𝑖 onto 𝒗 is given by 

𝑝 = 𝒗, 𝒙𝑖 = 𝒗
𝑇𝒙𝑖 
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𝒙 
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Projection variance 

𝑝𝑖 = 𝒗
𝑇𝒙𝑖 
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2 =
1

𝑛
 𝑝𝑖 − 𝑝

2
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𝜎𝒗
2 =
1

𝑛
 𝑝𝑖 − 𝑝

2

𝑖

 

 

𝒗 = argmax𝒗 𝜎𝒗
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𝑛
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Projection variance 

𝑝𝑖 = 𝒗
𝑇𝒙𝑖 

 

𝜎𝒗
2 =
1

𝑛
 𝑝𝑖

2

𝑖

=
1

𝑛
𝒑 2

=
1

𝑛
𝑿𝒗 2 
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Projection variance 

𝑝𝑖 = 𝒗
𝑇𝒙𝑖 

 

𝜎𝒗
2 = ⋯                             

=
1

𝑛
𝑿𝒗 2 =

1

𝑛
𝑿𝒗 𝑇 𝑿𝒗

=
1

𝑛
𝒗𝑇𝑿𝑇𝑿𝒗 = 𝒗𝑇𝚺𝒗 
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Projection variance 

𝑝𝑖 = 𝒗
𝑇𝒙𝑖 
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Data covariance matrix 

𝑿𝑻𝑿 



Objective function 

argmax𝒗 𝒗
𝑇𝚺𝒗 

 

𝑠. 𝑡. 𝒗 2 = 1 
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Optimization 

argmax𝒗 𝒗
𝑇𝚺𝒗 

 

𝑠. 𝑡. 𝒗 2 = 1 

 

 

𝚺𝒗 = 𝜆𝒗 
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Method of Lagrange multipliers… 

Eigenvector of 𝚺 Eigenvalue 



Example 

Xc = X – mean(X, axis=0)  

 

Sigma = Xc.T * Xc / n     

 

   (= cov(Xc, rowvar=0)) 

 

lambdas, vs = eigh(Sigma) 
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𝜆2 = 28.9 

𝜎𝑖
2 = 𝒗𝑖

𝑇𝚺𝒗𝑖 = 𝒗𝑖
𝑇𝜆𝑖𝒗𝑖 = 𝜆𝑖 𝒗𝑖

2 = 𝜆𝑖 
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Principal components are the 

eigenvectors of the covariance matrix. 

𝑽, 𝝀 = 𝐞𝐢𝐠(𝚺) 

For each PC, the corresponding eigenvalue 

𝜆𝑖 shows the amount of variance 

explained by the component. 



Principal Components Analysis 
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Eigenvalue spectrum of 𝚺 



Principal Components Analysis 
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Data projection onto PC 𝑖:  
𝒑 = 𝑿𝒗𝑖 

Data reconstruction from PC coordinates: 

𝑿proj𝑽∗
𝑇 = 𝑿 

Data projection onto multiple PCs:  

𝑿proj = 𝑿𝑽∗ 



SKLearn’s PCA 

from sklearn.decomposition 

                     import PCA 

 

model = PCA(n_components=2) 

model.fit(X) 

X_t = model.transform(X) 

 

model.components_[1,:] 
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SKLearn’s PCA 

from sklearn.decomposition 

import  

 PCA,  

 SparsePCA, 

 ProbabilisticPCA, 

 KernelPCA, 

 FastICA, 

 NMF, 

 DictionaryLearning, 

 ... 
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PCA: Geometric intuition 
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𝑿′ = 𝑿
5 0
0 0.9
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PCA: Geometric intuition 

𝑿 ∼ 𝑁 0,1  

 

𝑿′ = 𝑿
5 0
0 0.9

 

 
𝑿′′

= 𝑿′
cos 0.8 − sin 0.8
sin 0.8 cos 0.8
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𝑿 ∼ 𝑁 0,1  
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𝑿′′ = 𝑿 ⋅ 𝑫 ⋅ 𝑹 

 

𝑿′′ 𝑇 𝑿′′

= 𝑿𝑫𝑹 𝑇(𝑿𝑫𝑹) 
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= 𝑹𝑇𝑫2𝑹 
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𝚺 = 𝑽𝚲𝑽𝑇 
(𝑽 = 𝑹𝑻, 𝚲 = 𝐃2) 

𝑿′′𝑹𝑇 = 𝑿𝑫 

𝑿′′𝑽 = 𝑿𝐩𝐫𝐨𝐣 
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Quiz 

 Principal components are ___________ of 

the ___________ matrix. 

 

 Eigenvalue spectrum shows how much 

___________ is explained by each ______. 

 

 

 If 𝚺 = 𝑽𝚲𝑽𝑇, then 

   𝑿𝐩𝐫𝐨𝐣 = _______  
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Conclusion 
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Statistical Learning Theory, 

PAC-theory 

Semi-supervised learning, 

Active learning, 

Reinforcement learning, 

Multi-instance learning, 

Deep learning 

Graphical models, 

Neural networks, 

Fuzzy sets, 

Association rules 

Computer vision, 

Natural language processing, 

Information Retrieval, 

Music & Video processing, 

Bioinformatics,  

Physics, 

Robotics, 

Finance & Economics, 

… 



Where to go next 

 Books: 
 “The Elements of Statistical Learning” (Hastie & Tibshirani) 

 “Pattern Recognition and Machine Learning” (Bishop) 

 “Kernel Methods for Pattern Analysis” (Shawe-Taylor & 

Cristianini) 

 On-line materials: 

 http://videolectures.net 

 + Coursera, Udacity, edX 

 Tools: 

 Python, R, RapidMiner, Weka, Matlab, Mathematica, … 

AACIMP Summer School. 

August, 2012 

http://videolectures.net/


Where to go next 

 http://kt.era.ee/aacimp 
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Observation 

Analysis 

Generalization 
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Analysis 

Generalization 

CS & EE 



Contemporary Science 
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CS & EE 



Contemporary Science 

 

AACIMP Summer School. 

August, 2012 

Generalization 

CS & EE 

ML 



Contemporary Science 
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CS & EE 

ML 
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Thank You! 


