

Machine Learning: The Probabilistic Perspective

Konstantin Tretyakov

http://kt.era.ee

AACIMP Summer School 2015

Software Technology and Applications Competence Center

- Machine learning is important and interesting
- ▶ The general concept:

Modeling Under Company of the Compa

- Machine learning is important and interesting
- ▶ The general concept:

Probability Theory

Optimization

Why should the model, tuned on the training set, generalize to the test set?

Learning purely from data is, in general, impossible

X	Y	Output
0	0	False
0		True
	0	True
		?

Learning purely from data is, in general, impossible

Is it good or bad?

What should we do to enable learning?

Learning purely from data is, in general, impossible

- Is it good or bad?
 - Good for cryptographers, bad for data miners
- What should we do to enable learning?
 - Introduce assumptions about data ("inductive bias"):
 - I. How does existing data relate to the future data?
 - 2. What is the system we are learning?

Learning purely from data is, in general, impossible

- Is it good or bad?
 - Good for cryptographers, bad for data miners
- What should we do to enable learning?
 - Introduce assumptions about data ("inductive bias").
 - How does existing data relate to the future data?
 - 2. What is the system we are learning?

How does existing data relate to future data?

heads, heads, tails, heads, tails,

V • T • E Probability distributions [hide] [hide] Discrete univariate with finite support Benford · Bernoulli · Beta-binomial · categorical · hypergeometric · Poisson binomial · Rademacher · discrete uniform · Zipf · Zipf-Mandelbrot [hide] Discrete univariate with infinite support beta negative binomial · Boltzmann · Conway-Maxwell-Poisson · discrete phase-type · Delaporte · extended negative binomial · Gauss-Kuzmin · geometric · logarithmic · negative binomial · parabolic fractal · Poisson · Skellam · Yule-Simon · zeta Continuous univariate supported on a bounded interval, e.g. [0,1] [hide] Arcsine · ARGUS · Balding-Nichols · Bates · Beta · Beta rectangular · Irwin-Hall · Kumaraswamy · logit-normal · Noncentral beta · raised cosine · triangular · U-quadratic • uniform • Wigner semicircle Continuous univariate supported on a semi-infinite interval, usually [0,∞) [hide] Benini · Benktander 1st kind · Benktander 2nd kind · Beta prime · Bose-Einstein · Burr · chi-squared · chi · Coxian · Dagum · Davis · Erlang · exponential · F · Fermi-Dirac · folded normal · Fréchet · Gamma · generalized inverse Gaussian · half-logistic · half-normal · Hotelling's T-squared · hyper-exponential · hypoexponential · inverse chi-squared (scaled-inverse-chi-squared) · inverse Gaussian · inverse gamma · Kolmogorov · Lévy · log-Cauchy · log-Laplace · log-logistic · log-normal · Maxwell-Boltzmann · Maxwell speed · Mittag-Leffler · Nakagami · noncentral chi-squared · Pareto · phase-type · Rayleigh · relativistic Breit-Wigner • Rice • Rosin-Rammler • shifted Gompertz • truncated normal • type-2 Gumbel • Weibull • Wilks' lambda Continuous univariate supported on the whole real line $(-\infty, \infty)$ [hide] Cauchy · exponential power · Fisher's z · generalized normal · generalized hyperbolic · geometric stable · Gumbel · Holtsmark · hyperbolic secant · Landau · Laplace · Linnik · logistic · noncentral t · normal (Gaussian) · normal-inverse Gaussian · skew normal · slash · stable · Student's t · type-1 Gumbel · variance-gamma · Voigt Continuous univariate with support whose type varies [hide] generalized extreme value • generalized Pareto • Tukey lambda • g-Gaussian • g-exponential • shifted log-logistic Mixed continuous-discrete univariate distributions [hide] rectified Gaussian Multivariate (joint) [hide] Discrete: Ewens · multinomial · Dirichlet-multinomial · negative multinomial Continuous: Dirichlet · Generalized Dirichlet · multivariate normal · Multivariate stable · multivariate Student · normal-scaled inverse gamma · normal-gamma Matrix-valued: inverse matrix gamma · inverse-Wishart · matrix normal · matrix t · matrix gamma · normal-inverse-Wishart · normal-Wishart · Wishart Directional [hide] Univariate (circular) directional: Circular uniform · univariate von Mises · wrapped normal · wrapped Cauchy · wrapped exponential · wrapped Lévy Bivariate (spherical): Kent · Bivariate (toroidal): bivariate von Mises Multivariate: von Mises-Fisher · Bingham [hide] Degenerate and singular Degenerate: discrete degenerate · Dirac delta function Singular: Cantor **Families** [hide]

Probability theory

```
from numpy.random import beta, binomial, chisquare, dirichlet, exponential, f, gamma, geometric, gumbel, hypergeometric, ...
```

```
>>> numpy.random.seed(1)
>>> binomial(10, 0.2)
::: 2
```



```
from scipy.stats.distributions import beta,
binom, chisquare, ...
>>> numpy.random.seed(1)
>>> X = binom(10, 0.2)
>>> X.rvs()
>>> X.pmf(2), X.cdf(2), X.mean(), X.std(), ...
```


$$\binom{10 + \sin(N(0,2) \cdot B(0.1))}{F(U(0,1))}$$

Is it a fixed number?

Is it a fixed number?

- Frequentist: **Yes, it is**, we just don't know it precisely.
- Bayesian: No, it is not.
 It is a distribution.

Is it a fixed number?

- Frequentist: **Yes, it is**, we just don't know it precisely.
- Bayesian: No, it is not.
 It is a distribution.

In any case, we need probabilistic reasoning.

How do we infer a probabilistic model based on data?

How do we infer a probabilistic model based on data?

Hypothesis testing

Statistics

How do we infer a probabilistic model based on data?

Model selection

How do we infer a probabilistic model based on data?

Parameter inference

▶ How do we use a probabilistic model to act?

▶ How do we use a probabilistic model to act?

Model, trained on the training set might work well on the test set because:

- ▶ Because we **assume** a single underlying mechanism.
- Because we use statistical inference to infer the mechanism.
- Because we use decision theory to produce optimal decisions.

Quiz

AACIMP Summer School August 2015

What is the next output?

1,1,0,1,1,?

Step I: Modeling

Step 2: Parameter inference

1,1,0,1,1

$$p = ?$$

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.5)
 - Data: 1,1,0,1,1
 - Likelihood: ?

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.5)
 - Data: 1,1,0,1,1
 - Likelihood: $0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 \cdot 0.5 = 2^{-5}$

0.03125

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.2)
 - Data: 1,1,0,1,1
 - Likelihood: ?

Maximum Likelihood Estimation

Data Likelihood:

Pr[Data | Model]

- **Example:**
 - ▶ Model: Be(0.2)
 - Data: 1,1,0,1,1
 - Likelihood: $0.2 \cdot 0.2 \cdot 0.8 \cdot 0.2 \cdot 0.2 = 0.2^4 \cdot 0.8$

0.00128

Example:

- Model: Be(p)
- Data: 1,1,0,1,1
- Likelihood: $p \cdot p \cdot (1-p) \cdot p \cdot p = p^{n_1}(1-p)^{n_0}$

Maximum Likelihood Estimation

Example:

- Model: Be(p)
- Data: 1,1,0,1,1
- Likelihood: $p \cdot p \cdot (1-p) \cdot p \cdot p = p^{n_1}(1-p)^{n_0}$

$$\hat{p} = \frac{n_1}{n_0 + n_1}$$

Step 2: Parameter inference

p = 0.8

Maximum Likelihood Estimation:

argmax_{Model} Pr(Data | Model)

- You are on a trip in an exotic country and you meet a person who happens to be from Ukraine.
- Is he a member of the Rada (Ukrainian Parliament)?

- Data: "X is from Ukraine"
- Models:
 - "X is a member of the Rada",
 - "X is not a member of the Rada"

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of the Rada",
 - "X is not a member of the Rada"

Likelihoods:

- ▶ P(X is from Ukraine | X is a member of the Rada) =
- ▶ P(X is from Ukraine | X is not a member the Rada) =

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of the Rada",
 - "X is not a member of the Rada"

Likelihoods:

- ▶ P(X is from Ukraine | X is a member of the Rada) = 1
- P(X is from Ukraine | X is **not** a member the Rada) = $\frac{45}{7000}$

Problems of MLE

- Data: "X is from Ukraine"
- Models:
 - "X is a member of the Rada",

MLE treats all candidate models as equal and can thus **overfit**

- P(X is from Ukraine | X is a member of the Rada) = 1
- P(X is from Ukraine | X is **not** a member the Rada) = $\frac{45}{7000}$

Maximum A-posteriori Estimation

Maximum Likelihood Estimate (MLE):

argmax_{Model} Pr(Data | Model)

Maximum A-posteriori Estimate (MAP):

argmax_{Model} Pr(||Data)

argmax_{Model} Pr(Model|Data)

argmax_{Model} Pr(Model|Data)

 $argmax_{Model} \frac{Pr(Model, Data)}{Pr(Data)}$

argmax_{Model} Pr(Model, Data)

argmax_{Model} Pr(Model|Data)

 $argmax_{Model} \frac{Pr(Model, Data)}{Pr(Data)}$

argmax_{Model} Pr(Model, Data)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} Pr(Model|Data)

argmax_{Model} Pr(Model, Pr(Data) Model posterior

argmax_{Model} Pr(Model, Data)

argmax_{Model} Pr(Data | Model) Pr(Model)

Likelihood

Model prior

Maximum Likelihood Estimate (MLE):

argmax_{Model} Pr(Data | Model)

Maximum A-posteriori Estimate (MAP):

argmax_{Model} Pr(Data | Model) Pr(Model)

▶ Model: Be(p)

Data: 1,1,0,1,1

Likelihood: $p^4(1-p)$

▶ Model: Be(p)

Data: 1,1,0,1,1

Likelihood: $p^4(1-p)$

Prior: U(0,1)

$$\hat{p}_{MAP} = \hat{p}_{MLE} = \frac{n_1}{n_0 + n_1}$$

Model: Be(p)

Likelihood: $p^4(1-p)$

Data: 1,1,0,1,1

Prior: Beta(2, 2)

$$\hat{p}_{MAP} = \frac{n_1 + 1}{n_0 + n_1 + 2}$$

Step 2: Parameter inference

1,1,0,1,1

Be(p)

$$p = 0.7$$
?

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Model} log Pr(Data|Model) + log Pr(Model)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Mode} log Pr(Data|Model) + log Pr(Model)

argmax_{Model} Pr(Data | Model) · Pr(Model)

argmax_{Model} log (Pr(Data | Model) · Pr(Model))

argmax_{Mode} log Pr(Data|Model) + log Pr(Model)

 $\operatorname{argmin}_{w} \operatorname{Error}(\operatorname{Data}, w) + \operatorname{Complexity}(w)$

Problems of MAP estimation

Problems of MAP estimation

Problems of MAP estimation

Pick the model with minimal expected risk $E(Model \mid Data)$

Bayesian estimation

Pick the model with minimal expected risk $E(Model \mid Data)$

Step 2: Parameter inference

1,1,0,1,1

Be(p)

p = 0.65?

Bayesian estimation +

Use the full posterior distribution Pr(Model | Data)

Step 2: Parameter inference

▶ Three major model inference methods are:

Step 3: Decision making

X	P(X)	"["	"0"
1	8.0		
0	0.2		

X	P(X)	"["	"0"
I	0.8	0	1
0	0.2	5	0

X	P(X)	"["	"0"
I	0.8	0	I
0	0.2	5	0
Expected Risk			

X	P(X)	"["	"0"
1	0.8	0	I
0	0.2	5	0
Expected Risk		I	0.8

X	P(X)	"["	"0"	
I	0.8	0	I	
0	0.2	5	0	
Expected	d Risk	I	0.8	

Step 3: Decision making

Be(0.8) predict "0"

Summary

Probability for modeling

Statistics for estimation

Decision theory for prediction

AACIMP Summer School August 2015

Day	Outlook	Temp	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Shall we play tennis today?

PlayTennis
No
No
Yes
Yes
Yes
No
Yes
No
Yes
No

Pla	yTenn
	No
	No
	Yes
	Yes
	Yes
	No
	Yes
	No
	Yes
	No

Estimate a probabilistic model and predict:

$$Pr(Yes) = 9/14 = 0.64$$

$$Pr(No) = 5/14 = 0.36$$

It's windy today. Tennis, anyone?

Wind	PlayTennis
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No

It's windy today. Tennis, anyone

Wind	PlayTennis
Weak	No
Strong	No
Weak	Yes
Weak	Yes
Weak	Yes
Strong	No
Strong	Yes
Weak	No
Weak	Yes
Weak	Yes
Strong	Yes
Strong	Yes
Weak	Yes
Strong	No

$$Pr(Yes | Weak) = 6/8$$

$$Pr(No | Weak) = 2/8$$

$$Pr(Yes | Strong) = 3/6$$

$$Pr(No | Strong) = 3/6$$

Humidity	Wind	PlayTennis
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

$$Pr(Yes | High, Weak) = 2/4$$

$$Pr(No | High, Weak) = 2/4$$

$$Pr(Yes | High,Strong) = 1/3$$

$$Pr(No | High, Strong) = 2/3$$

. . .

The Bayesian Classifier

In general:

Estimate from data:

$$Pr(Class | x_1, x_2, x_3, ...)$$

2. For a given instance $(x_1, x_2, x_3, ...)$ predict class whose conditional probability is greater*:

Problem

We need exponential amount of data

		_
Humidity	Wind	PlayTennis
High	Weak	No
High	Strong	No
High	Weak	Yes
High	Weak	Yes
Normal	Weak	Yes
Normal	Strong	No
Normal	Strong	Yes
High	Weak	No
Normal	Weak	Yes
Normal	Weak	Yes
Normal	Strong	Yes
High	Strong	Yes
Normal	Weak	Yes
High	Strong	No

$$Pr(Yes | High, Weak) = 2/4$$

$$Pr(No | High, Weak) = 2/4$$

$$Pr(Yes | High,Strong) = 1/3$$

$$Pr(No | High, Strong) = 2/3$$

. . .

Naïve Bayes Classifier

To scale beyond 2-3 attributes, use a hack:

Assume that attributes are independent within each class:

$$Pr(x_1, x_2, x_3 | Class)$$

= $Pr(x_1|Class)Pr(x_2|Class)Pr(x_3|Class) ...$

1.
$$Pr(C_1|x)$$
 $\rightarrow Pr(C_2|x)$

$$\rightarrow predict C_1$$

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

1.
$$Pr(C_1|x) > Pr(C_2|x)$$
 $\Rightarrow predict C_1$

2. $\frac{Pr(C_1) Pr(x|C_1)}{Pr(x)} > \frac{Pr(C_2) Pr(x|C_2)}{Pr(x)}$
 $\Rightarrow predict C_1$

Naïve Bayes Classifier

- 1. $Pr(C_1|x) > Pr(C_2|x)$
 - \rightarrow predict C_1
- 2. $\frac{\Pr(C_1)\Pr(\boldsymbol{x}|C_1)}{\Pr(\boldsymbol{x})} > \frac{\Pr(C_2)\Pr(\boldsymbol{x}|C_2)}{\Pr(\boldsymbol{x})}$
 - \rightarrow predict C_1
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$ \rightarrow predict C_1

- 1. $Pr(C_1|x) > Pr(C_2|x)$
 - \rightarrow predict C_1
- 2. $\frac{\Pr(C_1)\Pr(\boldsymbol{x}|C_1)}{\Pr(\boldsymbol{x})} > \frac{\Pr(C_2)\Pr(\boldsymbol{x}|C_2)}{\Pr(\boldsymbol{x})}$
 - \rightarrow predict C_1
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$ \rightarrow predict C_1
- 4. $Pr(C_1) \cdot Pr(x_1|C_1) Pr(x_2|C_1) ... Pr(x_m|C_1) > Pr(C_2) \cdot Pr(x_1|C_2) Pr(x_2|C_2) ... Pr(x_m|C_2)$ → predict C_1

1.
$$Pr(C_1|x) > Pr(C_2|x)$$

 \rightarrow predict C_1

2.
$$\frac{\Pr(C_1)\Pr(\boldsymbol{x}|C_1)}{\Pr(\boldsymbol{x})} > \frac{\Pr(C_2)\Pr(\boldsymbol{x}|C_2)}{\Pr(\boldsymbol{x})}$$

- → predict C₁
- 3. $Pr(C_1) Pr(x|C_1) > Pr(C_2) Pr(x|C_2)$
 - → predict C

4.
$$Pr(C_1) \cdot Pr(x_1|C_1) Pr(x_2|C_1) ... Pr(x_m|C_1) > Pr(C_2) \cdot Pr(x_1|C_2) Pr(x_2|C_2) ... Pr(x_m|C_2)$$

→ predict C

Works for both discrete and continuous attributes.

▶ The goods:

- Easy to implement, efficient
- Won't overfit, intepretable
- Works better than you would expect (e.g. spam filtering)

The bads

- "Naïve", linear
- Usually won't work well for too many classes
- Not a good probability estimator

Naïve Bayes Classifier

Quiz

MLE:

argmax_{Model}_____

MAP:

argmax_{Model}_____

Quiz

▶ Naïve Bayesian classifier assumption:

- $\Pr(C|x_1,x_2) = \Pr(C|x_1)\Pr(C|x_2)$
- $\Pr(x_1, x_2 | C) = \Pr(x_1 | C) \Pr(x_2 | C)$
- $\Pr(C_1, C_2 | x) = \Pr(C_1 | x) \Pr(C_2 | x)$
- $\Pr(x|C_1,C_2) = \Pr(x|C_1) \Pr(x|C_2)$

All machine learning methods we have mentioned so far rely on MLE or MAP

- Yes
- No

The Land of Machine Learning

Questions?

http://xkcd.com/552/