
Welcome to Machine Learning

Konstantin Tretyakov
http://kt.era.ee

IFI Summer

School 2014

http://kt.era.ee/

Data mining,

Data analysis, Statistical analysis,

Pattern discovery, Statistical learning,

Machine learning, Predictive analytics,

Business intelligence, Data-driven statistics,

Inductive reasoning, Pattern analysis,

Knowledge discovery from databases,

Neural networks,

…

A

“Unformalizable” problems

“Unformalizable” problems

“Unformalizable” problems

А

A

A

B

B

B

B

 General rule:

IF (Х is made of plastic),
THEN (Х is not edible)

 Application in the particular case:
Х = Rubic’s cube

⇒
Rubic’s cube is not edible

 General rule:

add(x, y) = function { … }

 Application in the particular case:
add(2,4)

 General rule:

add(x, y) = function {

???

}

 Particular cases:
add(2,4) = 6

add(5,3) = 8

add(1,2) = 3

…

In
d

u
c

ti
o

n

Deduction

Given a general rule, make a decision in a particular case

Induction

Given particular cases, find a general rule

Deduction and Induction

Classification

by analogy

MNIST dataset

 http://yann.lecun.com/exdb/mnist/

 Handwritten digits, 28 х 28

…

MNIST dataset

images = load_images()

labels = load_labels()

Let us just use 1000 images

training_set = images[0:1000]

training_labels = labels[0:1000]

MNIST dataset

> training_set[0]

array([0, 0, 0, ...,

254, 241, 198, ...])

> training_labels[0]

‘7’

Nearest neighbor method

Training set

?
4

7

9

7

4

Nearest neighbor method

Training set

4

4

7

9

7

4

Nearest neighbor method

def classify(img):

similarities =

[similarity(img, p) for p in training_set]

i = similarities.index(max(similarities))

return training_labels[i]

Nearest neighbor method

def classify(img):

similarities =

[similarity(img, p) for p in training_set]

i = similarities.index(max(similarities))

return training_labels[i]

def similarity(img1, img2):

return -sum(abs(img1 - img2))

Testing the algorithm

test_set = images[1000:2000]

test_labels = labels[1000:2000]

predicted_class = [classify(p) for p in test_set]

n_successes =

sum(array(predicted_class) ==

array(test_labels))

=> 843/1000

9 or 4?

from sklearn.neighbors import

KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors=1)

clf.fit(training_set, training_labels)

predicted_class = clf.predict(test_set)

=> 855/1000

Scikit-learn
http://scikit-learn.org/

Nearest neighbor method

Training set

4

4

7

9

7

4

Some samples may be thrown away

Training set

4

4

7

9

7

4

…or we can add “weights”

Training set

4

4

7

9

7

4

0.0

1.0

1.0

1.0

0.0

…or we can add “weights”

Training set

4

4

7

9

7

4

0.0

0.9

1.1

2.0

0.0

.. or we can SUM instead of MAX

Training set

4

4

7

9

7

4

0.0

0.9

1.1

2.0

0.0

.. or we can SUM instead of MAX

Training set

4

7

9

7

4

0.0

0.9

1.1

2.0

0.0

evidence(img, 4) =

0.9 * similarity(img, tr[1])

+

0.0 * similarity(img, tr[4])

= 34.0

.. or we can SUM instead of MAX

Training set

4

7

9

7

4

0.0

0.9

1.1

2.0

0.0

evidence(img, 7) =

0.0 * similarity(img, tr[0])

+

2.0 * similarity(img, tr[3])

= 20.0

General form

𝐾(𝒙𝑖 , 𝒛)

General form

𝐾(𝒙𝑖 , 𝒛)

𝐾(𝒙𝑗 , 𝒛)

General form

𝑖

𝑤𝑖𝐾(𝒙𝑖 , 𝒛)

𝑗

𝑤𝑗𝐾(𝒙𝑗 , 𝒛)

General form

𝑖

𝑤𝑖𝐾(𝒙𝑖 , 𝒛)

−

𝑗

𝑤𝑗𝐾(𝒙𝑗 , 𝒛)

General form

𝑖

𝑤𝑖𝑦𝑖𝐾(𝒙𝑖 , 𝒛)

+

𝑗

𝑤𝑗𝑦𝑗𝐾(𝒙𝑗 , 𝒛)

General form

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

How to find the weights?

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

How to find the weights?

 Find weights, such that the

misclassification error rate on the training set

is the smallest.

w = argminw ErrorRate (fw, Data)

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

How to find the weights?

 Find weights, such that the

approximation to misclassification error on

the training set is the smallest.

w = argminw Error (fw, Data)

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

How to find the weights?

 Find weights, such that the

error rate on the training set is the smallest +

there are many zero weights.

w = argminw Error (fw, Data) + Complexity (w)

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

Support Vector Machine

from sklearn.svm import SVC

clf = SVC(kernel=‘linear’)

clf.fit(training_set, training_labels)

predicted_class = clf.predict(test_set)

=> 865/1000

Classification by

analogy:
k-NN

SVM

RBF

Search for the nearest neighbor

def classify(img):

similarities =

[similarity(img, p) for p in training_set]

i = similarities.index(max(similarities))

return training_labels[i]

Search for the nearest neighbor

def classify(img):

similarities =

[similarity(img, p) for p in training_set]

i = similarities.index(max(similarities))

return training_labels[i]

Inefficient

Search for the nearest neighbor

def classify(img):

nearest_neighbour =

training_set.find_nearest_neighbour(img)

return nearest_neighbour.label

Indexing!

find_nearest_neighbour

if pixel[10,13] > 4:

if pixel[3,24] < 0:

nearest_neighbour = A

else:

nearest_neighbour = B

else:

nearest_neighbour = C

Classification Tree

if pixel[10,13] > 4:

if pixel[3,24] < 0:

class = ‘1’

else:

class = ‘2’

else:

class = ‘3’

Classification Tree

Classification Tree

Classification Tree

Orange
http://orange.biolab.si/

Trees

ID3

C4.5

RegTree

Search for optimal model

parameters

General form of a model

𝑓𝒘 𝒛 =

𝑖

𝑤𝑖𝑦𝑖 𝐾(𝒙𝑖 , 𝒛)

Search for the optimal

tree

General form of a model

Optimization

Modeling

Linear model

f(image) =

pixel1*w1 + pixel2*w2 + … + pixel784*w784

Linear Classification

from sklearn.linear_model import

LinearRegression,

LogisticRegression,

RidgeClassifier,

LARS,

ElasticNet,

SGDClassifier,

...

=> 809/1000

Modeling

Linear model

f(image) =

pixel1*w1 + pixel2*w2 + … + pixel784*w784

f(image) =

pixel1*w1 + pixel2*w2 + … + pixel784*w784

…

pixel1

pixel2

pixel3

pixel4

pixel784

∑

w1
w2

w3

w4

w784

f(image)

Neural network

Modeling

Why should a model,

trained on one set of data,

work well on future data?

When is it not the case?

How to formalize a new model?

How to find parameters?

How to create efficient learning algorithms?

How to handle structured data?

Unsupervised learning

Semi-supervised learning

On-line learning

Active learning

Multi-instance learning

Reinforcement learning

Probabilistic models

Graphical models

Ensemble learners

Data fusion

HPC

Tools:
R, Weka, RapidMiner,

Orange, scikits-learn,

MLPy, MDP, PyBrain, …

“Unformalizable” problems

Model-based Instance-based

Deduction and Induction

Theory and

Practice

Quiz

 The OCR problem is unusual in that it is ____.

 The two important perspectives on machine

learning are ______-based and _____-based.

 The “soul” of machine learning is the

minimization task

argmin𝒘 ________ + 𝜆 _________

Quiz

 Two important components of machine

learning:

?

?

Quiz

 The machine learning algorithms mentioned in

this lecture were:

Quiz

 The machine learning algorithms mentioned in

this lecture were:

K-nearest neighbor classifier

SVM

Classification trees

Linear models

Neural networks

Questions?

