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What do you need to know about 

optimization?

1. Optimization is important

2. Optimization is possible*

* Basic techniques
 Constrained / Unconstrained

 Analytic / Iterative

 Continuous / Discrete

IFI Summer School.                              

June 2014



Special cases of optimization

 Machine learning

 …
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Special cases of optimization

 Machine learning

 Algorithms and data structures

 General problem-solving

 Management and decision-making
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Special cases of optimization

 Machine learning

 Algorithms and data structures

 General problem-solving

 Management and decision-making

 Evolution

 The Meaning of Life?
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Supervised Learning

 Let 𝑋 and 𝑌 be some sets.

 Let there be a training dataset:

𝐷 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛
𝑥𝑖 ∈ 𝑋, 𝑦𝑖 ∈ 𝑌
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Find a function 𝑓: 𝑋 → 𝑌, 

generalizing the dependency 

present in the data.



Classification

 𝑋 = ℝ2, 𝑌 = {blue, red}

 𝐷 = { 1.3, 0.8 , red , 2.5,2.3 , blue , … }

 𝑓 𝑥1, 𝑥2 = if 𝑥1 + 𝑥2 > 3 then blue else red

IFI Summer School.                              

June 2014



Regression

 𝑋 = ℝ, 𝑌 = ℝ

 𝐷 = { 0.5, 0.26 , 0.43, 0.08 ,… }

 𝑓 𝑥 = 𝑥2
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Linear Regression

 𝑋 = ℝ, 𝑌 = ℝ

 𝐷 = { 0.5, 0.26 , 0.43, 0.08 ,… }

 𝑓 𝑥 = −0.14 + 1.01 𝑥
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Linear Regression

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙

𝑓 𝑥1, … , 𝑥𝑚 = (𝑤0, 𝑤1, … , 𝑤𝑚)

1
𝑥1
⋮
𝑥𝑚
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Linear Regression

𝑓 𝒙 = 𝑤0 +𝒘𝑇𝒙

𝑓 𝑥1, … , 𝑥𝑚 = (𝑤0, 𝑤1, … , 𝑤𝑚)

1
𝑥1
⋮
𝑥𝑚

𝑓 𝒙 =  𝒘𝑇 𝒙
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Linear Regression
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Objective Function

𝑒𝑖 = 𝑓(𝑥𝑖) − 𝑦𝑖
2
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Objective Function

𝐸𝐷(𝑤) = 

𝑖

𝑤𝑥𝑖 − 𝑦𝑖
2
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Objective Function
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𝑿𝒘 ≈ 𝒚
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𝑿𝒘− 𝒚 𝟐

𝒘 ≈ 𝑿−𝟏𝒚?
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Objective Function

𝐸𝐷 𝒘 = 

𝑖

𝒙𝒊
𝑇𝒘− 𝑦𝑖

2
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𝑿𝒘− 𝒚 𝟐

𝒘 = 𝑿+𝒚 !

𝑿𝒘 ≈ 𝒚



Optimization

argmin𝐰 𝑿𝒘 − 𝒚 2
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Optimization
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𝒂 2 = 𝒂𝑇𝒂



Optimization

argmin𝐰
1

2
𝑿𝒘 − 𝒚 2

1

2
𝑿𝒘 − 𝒚 𝑇(𝑿𝒘 − 𝒚)
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𝒂 + 𝒃 𝑇 = (𝒂𝑇 + 𝒃𝑇)



Optimization

1

2
𝒘𝑇𝑿𝑇 − 𝒚𝑇 (𝑿𝒘 − 𝒚)

1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 𝒚𝑇𝑿𝒘 −𝒘𝑻𝑿𝑻𝒚 + 𝒚𝑻𝒚
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𝒂 𝒃 + 𝒄 = 𝒂𝒃 + 𝒂𝒄



Optimization

1

2
𝒘𝑇𝑿𝑇 − 𝒚𝑇 (𝑿𝒘 − 𝒚)

1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 𝒚𝑇𝑿𝒘 −𝒘𝑻𝑿𝑻𝒚 + 𝒚𝑻𝒚

1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘 + 𝒚𝑻𝒚
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𝒚𝑻𝑿𝒘 = 𝒘𝑻𝑿𝑻𝒚 = scalar



Optimization
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Optimization

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘 + 𝒚𝑇𝒚

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘 − 𝑿𝑻𝒚
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𝛁 𝒇 + 𝒈 = 𝛁𝐟 + 𝛁𝐠

𝛁 𝒘𝑻𝑨𝒘 = 2𝑨𝒘

𝛁 𝒂𝑻𝒘 = 𝒂



Optimization

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘 + 𝒚𝑇𝒚

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘 − 𝑿𝑻𝒚
𝟎 = 𝑿𝑻𝑿𝒘 − 𝑿𝑻𝒚
𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚
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Optimization

𝐸 𝒘 =
1

2
𝒘𝑇𝑿𝑇𝑿𝒘 − 2𝒚𝑇𝑿𝒘 + 𝒚𝑇𝒚

𝛻𝐸 𝒘 = 𝑿𝑻𝑿𝒘 − 𝑿𝑻𝒚
𝟎 = 𝑿𝑻𝑿𝒘 − 𝑿𝑻𝒚
𝑿𝑻𝑿𝒘 = 𝑿𝑻𝒚

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚
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Linear Regression Solution

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚
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Linear Regression Solution

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚

X = matrix(X)

y = matrix(y)

w =(X.T * X).I * X.T * y
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Linear Regression Solution

𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚
𝒘 = 𝑿+𝒚

X = matrix(X)

y = matrix(y)

w =(X.T * X).I * X.T * y

w = pinv(X) * y
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Moore-Penrose 

pseudoinverse



Linear Regression & SKLearn

from sklearn.linear_model import

LinearRegression

model = LinearRegression()

model.fit(X, y)

w=(model.intercept_,model.coef_)

model.predict(X_new)
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Stochastic Gradient Regression

𝚫𝒘 = −𝜇(𝒘𝑇𝒙𝑖 − 𝑦𝑖)𝒙𝒊
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Stochastic Gradient Regression

𝚫𝒘 = −𝜇𝑒𝑖𝒙𝒊
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Stochastic Gradient Regression

𝚫𝒘 = −𝜇𝑒𝑖𝒙𝒊
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from sklearn.linear_model import SGDRegressor

model = SGDRegressor(alpha=0, n_iter=30)

model.fit(X, y)



Polynomial Regression

Say we’d like to fit a model:

𝑓 𝑥1, 𝑥2
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2

2 +𝑤3𝑥1𝑥2
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Polynomial Regression

Say we’d like to fit a model:

𝑓 𝑥1, 𝑥2
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2

2 +𝑤3𝑥1𝑥2

Simply transform the features and proceed as 

normal:

𝑥1, 𝑥2 → (𝑥1, 𝑥2
2, 𝑥1𝑥2)
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Single-variable Polynomial OLS

# n x 1 matrix

x = matrix(…)

# Add bias & square features

X = hstack([x**0, x**1, x**2])

# Solve for w

w = pinv(X) * y
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Overfitting
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Regularization
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1
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𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2

ℓ2-penaltyℓ2-loss
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𝐸 𝒘 =
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𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 1

ℓ1-penaltyℓ2-loss



Regularization
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 0

ℓ0-penaltyℓ2-loss



Regularization

IFI Summer School.                              

June 2014

𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝑤 0

ℓ0-penaltyℓ2-loss

>>> SGDRegressor?

Parameters 

----------

loss : str, 'squared_loss' or 'huber' ...

...

penalty : str, 'l2' or 'l1' or 'elasticnet' 

...



Regularization
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𝐸 𝒘 =
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2

ℓ2-penaltyℓ2-loss



Ridge regression

argmin𝒘
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘 2

𝒘 = 𝑿𝑇𝑿 + 𝜆 𝑰 −1𝑿𝑇𝒚
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𝑰 =

1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1



Ridge regression

argmin𝒘
1

2
𝑿𝒘 − 𝒚 2 + 𝜆 𝒘∗

2

𝒘 = 𝑿𝑇𝑿 + 𝜆 𝑰∗
−1𝑿𝑇𝒚
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𝑰∗ =

𝟎 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 1

The bias term 𝑤0 is 

usually not penalized.



Exercise

Derive an SGD algorithm 

for Ridge Regression.
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Effects of Regularization
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Quiz

 OLS linear regression searches for a _______ 

model that has the best _________.

 Analytic solution for OLS regression:

𝒘 = _________

 Stochastic gradient solution for OLS 

regression:

𝚫𝒘 = _________
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Quiz

 Large number of model parameters and/or 

small data may lead to ___________.

 We address overfitting by __________.

 “Ridge regression” means __-loss and ___-

penalty.

 Analytic solution for Ridge regression:

𝒘 = _________
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Quiz

 As we increase regularization strength (i.e. 

increase 𝜆), the training error _________.

 … and the test error ________.
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Questions?

IFI Summer School.                              

June 2014


