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So far...

» Machine learning is important and
Interesting

» The general concept:

Fitting models to data
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So far...

» Machine learning is important and
Interesting

» The general concept:

Searching for the best
model fitting to data
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So far...
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The Land of Machine Learning










What do you need to know about

optimization?
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What do you need to know about
optimization? i

.. Optimization is important
2. Optimization is possible
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What do you need to know about = <=
optimization? G

.. Optimization is important
2. Optimization is possible™

* Basic techniques
Constrained / Unconstrained
Analytic / Iterative
Continuous / Discrete
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Special cases of optimization

» Machine learning
> ...
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Special cases of optimization
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» Machine learning

» Algorithms and data structures

» General problem-solving

» Management and decision-making
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Special cases of optimization
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» Machine learning

» Algorithms and data structures

» General problem-solving

» Management and decision-making

» Evolution
» The Meaning of Life?
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Example i

Problem. Given a dataset x1,x5,....x, € R, find w, that
minimizes
n
2
f(w) =) [Ix;i —w]|
i=1

Propose an analytical as well as an iterative solution.
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Example e
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Example
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Example

200

Aw = —uVf(w)
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Example
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Example
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Linear Regression
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Supervised Learning

» Let X and Y be some sets.

» Let there be a training dataset:

D = {(xl; yl); (Xz, Y2); e (xnr y?’l)}
Xi - X, Vi eEY
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Supervised Learning L2

» Let X and Y be some sets.

» Let there be a training dataset:

D = {(xl; yl); (Xz, Y2); e (xTU y?’l)}
Xi - X, Vi eEY

» Supervised learning:

Find a function f: X - Y,

generalizing the dependency
present in the data.
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Classification i

» X =R?%, Y = {blue, red}
» D = {((1.3,0.8),red), ((2.5,2.3), blue), ... }
» f(xq,x,) =if (x; + x,) > 3 then blue else red

IFI Summer School.
June 2014



Regression GBS

1z

10 F

08

06

0.4 |

02

00

0.2 F

04 |

V) X=R Y=R
» D = {(0.5,0.26), (0.43,0.08), ...
» f(x) = x°
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Linear Regression i
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' X=R Y=R
» D = {(0.5,0.26), (0.43,0.08), ...}
» f(x) = —0.14 + 1.01 x
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Linear Regression

X =R™ Y=R
f(xq, e, X)) = Wo +Wixg + -+ WX
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Linear Regression

X =R™ Y =R
f(xq, e, X)) = Wg HWixy + -+ WX
f(le ,Xm) :_WO (W,—.X')

Inner product
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Linear Regression Gatin

X = Rm, Y=R
f(le ;xm) = Wy + Wq1X1 + -+ WmXm
(X1, ) X)) =Wy W, X)

f(xl' ""xm) — Wy (Wl' ""Wm)
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Linear Regression

X:Rm, Y =R

o,

f(le ;xm) = Wy + Wq1X1 + -+ WmXm

f(xli ;xm) :_WO (W,T)
X1
X2
f(xll Jxm) — WO (Wl, ,Wm)

xm
f(xll ;xm) = Wy + WTx
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Linear Regression

f(x)=wy +wlx
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Linear Regression

f(x) = wo+-wlix

Bias term
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Linear Regression ik

f(x)=wy +wlx

X1
f(Xq, ey Xm) = (Wo, Wq, v, Wy )

Xm
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Linear Regression

f(x)=wy +wlx

f(Xq, ey Xm) = (Wo, Wq, v, Wy )

f(x) =w'x

X1

Xm
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Linear Regression

f(x)=wlx
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Objective Function i
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Objective Function
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Objective Function i
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Ep(w) = Z(m V)2
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Objective Function ik
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Objective Function

Ep(w) = z(wai
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Objective Function

Exw) = ) (xfw =)’

T'w Yn
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Objective Function

Exw) = ) (xfw =)’

%) :

(ox1.) | xlw V1

(X3 )| x3W Y2

(...x,T,'....) xIw Yn
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Objective Function

Exw) = ) (xfw =)’

Xw—y
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Objective Function

Exw) = ) (xfw—y,)’

| Xw — y||?
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Objective Function

Exw) = ) (xfw—y,)’

| Xw — y||?

U

AXw=y
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Objective Function

Exw) = ) (xfw—y,)’

o,

| Xw — y||?
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Objective Function

Exw) = ) (xfw—y,)’
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| Xw — y||?
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Optimization

argmin, || Xw — y||?
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Optimization

argminwi I Xw — y||?
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Optimization %P‘f/:lqs:m

argmin,, - [|Xw — vyl

lal|* = a’a
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Optimization Fae

argmin,, > [|Xw — y||*

1
> Xw —y) ' (Xw —y)

(a+b)" = (a" +b")

IFI Summer School.
June 2014



"

»é
[eni]
=
"Nv

«OO

—
. [ —
O\ —

NN
oN
AN |
w w
END
77
ENsis

Optimization

l(wTXT -yDXw —y)

a(b+c) =ab + ac

2

1
> (WIXTXw —yTXw —wiXTy + yTy)
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Optimization it

%(WTXT —y)Xw —y)

1
5 (WIXTXw —yTXw —wiXTy + yTy)

y'Xw = w X"y = scalar

1
> (WIXTXw — 2y"Xw + yTy)
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Optimization

1
E(w) = > WI'XTXw — 2y"Xw + yTy)
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Optimization e

V(f+g) =Vf+Vg
v(wlAw) = 24w
V(a'w) = a

VE(w) = X"Xw — X'y
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Optimization

1
E(w) = > WI'XTXw — 2y"Xw + yTy)

VE(w) = XTXw — X'y
0=X"xw-X"y
X'xw=Xx"y
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Optimization

1
E(w) = > WI'XTXw — 2y"Xw + yTy)

VE(w) = XTXw — X'y

0=X"xw-X"y
X'xw=Xx"y

w=X'X)"1xTy
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Linear Regression Solution e

w=(XTX)"1xTy
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Linear Regression Solution i

w=X"'X)"1xTy

X = matrix (X)
y = matrix(y)
w =(X.T * X).I * X.T * vy
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Linear Regression Solution Bt
w =|(XTX)"1XTly
Moore-Penrose
¥ = matrix (X) pseudoinverse
matrix (vy)
(X.T *» X).I * X.T * vy

2 K
[
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Linear Regression Solution R
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w=XX)"'X"y

w=X"y

matrix (X)

matrix (y)

Moore-Penrose
pseudoinverse

(X.T * X).I * X.T * vy

|2 X

pinv (X) * vy
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Linear Regression & SKLearn

from sklearn.linear model import

LinearRegression

model = LilinearRegression ()
model.f1t (X, V)

w=(model.intercept ,model.coef )

model.predict (X new)
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Stochastic Gradient Regression

Aw = —u(w' x; — ¥;)X;
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Stochastic Gradient Regression

Aw = —UEi X

v -1

b
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Stochastic Gradient Regression ;s

Aw = —UEi X

from sklearn.linear model import SGDRegressor

model = SGDRegressor (alpha=0, n 1ter=30)
model.fit (X, V)

IFI Summer School.
June 2014



Polynomial Regression

Say we'd like to fit a model:

f(x1,%7)

= Wy + WiXx{ + WoX5 + WaX{X,
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Polynomial Regression

Say we'd like to fit a model:

f(x1,%7)

= Wy + WiXx{ + WoX5 + WaX{X,

Simply transform the features and proceed as
normal:

(x1,x2) = (x1:x%» X1X7)

IFI Summer School.
June 2014



"

}>€
o]
=
"Nv

'\OO

&b

- —
N gy —
—

2,

|
|
ENsIS ¢

Single-variable Polynomial OLS

'V
& o
-
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# n x 1 matrix

X = matrix(..)

# Add bias & square features
X = hstack ([x**0, x*¥*1, x**2])

# Solve for w

w = plnv(X) * vy
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Overfitting
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Regularization

Ew) = = [1Xw — yl12 H Allw]?
2

40

B

30 F

&5+

20 |

15

10

0 5 10 15 20 25 30 35
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Regularization B

Ew) = = [1Xw — yl12 H Allw]?
2

40

£,-loss - £,-penalty

B

30 F

&5+

20 |

15

10

0 5 10 15 20 25 30 35
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Regularization i

1
Ew) == IIXw -y’ J,Mwwl

£,-loss £1-penalty
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Regularization

'/UW‘O

1 2
E(w) = EHXW — y||° 4

£,-loss

£o-penalty
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Regularization

1
Ew) = = [1Xw — yII? 4 2wl

£,-loss £o-penalty
>>> SGDRegressor?
Parameters
loss : str, 'squared loss' or 'huber'

penalty : str, 'l2' or 'll' or 'elasticnet'
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Regularization B

Ew) = = [1Xw — yl12 H Allw]?
2

40

£,-loss - £,-penalty
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Ridge regression

n o Xw —y||% + A||w]|?
argmin,, - [|Xw — yl|* + Aflw

w=X'X+21D"1X"y

1 0 .. O
=L
0O 0 .. 1

IFI Summer School.
June 2014



Ridge regression

1
argmin,, > [Xw = Y12 + Allw. I

w=X'X+11,)"1X"y

The bias term wy Is
usually not penalized.
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Exercise

Derive an SGD algorithm
for Ridge Regression.
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Effects of Regularization
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Training error
Test error
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Quiz

» OLS linear regression searches for a
model that has the best

» Analytic solution for OLS regression:
W =

» Stochastic gradient solution for OLS
regression:
Aw =
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Quiz

» Large number of model parameters and/or
small data may lead to

» We address overfitting by

» “Ridge regression” means __ -loss and -
penalty.

» Analytic solution for Ridge regression:
W =
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Quiz

» As we increase regularization strength (i.e.
increase A), the training error

» ... and the test error
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