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The Land of Machine Learning
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Reasoning by analogy

Dragons



So far…

 Machine learning is important and 

interesting

 The general concept:
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Optimization
Probability

Theory



So far…

 Instance-based methods

 Tree learning methods

 The “soul” of machine learning:

 Particular models:

 OLS regression (ℓ2-loss, 0-penalty regression)

 Ridge regression (ℓ2-loss, ℓ2-penalty regression)
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argmin𝒘 Error Data, 𝒘 + 𝜆 Complexity(𝒘)



Next

Why should the model, 

tuned on the training set, 

generalize to the test set?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

X Y Output

0 0 False

0 1 True

1 0 True

1 1 ?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

 Is it good or bad?


 What should we do to enable learning?

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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

 Is it good or bad?
 Good for cryptographers, bad for data miners

 What should we do to enable learning?
 Introduce assumptions about data (“inductive bias”):  

1. How does existing data relate to the future data?

2. What is the system we are learning?

IFI Summer School.                   

June 2014



The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

 Is it good or bad?
 Good for cryptographers, bad for data miners

 What should we do to enable learning?
 Introduce assumptions about data (“inductive bias”):  

1. How does existing data relate to the future data?

2. What is the system we are learning?

IFI Summer School.                   

June 2014



How does existing data relate to future data?
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?

Training set

Test set
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heads,

heads,

tails,

heads,

tails,

…

X P(X)

heads 0.5

tails 0.5
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𝑓 𝒙 =
1

2𝜋
exp −

𝒙 2

2



Probability theory
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𝐁(𝒏, 𝒑)

𝐁𝐞(𝒑)

𝑵(𝝁, 𝚺)𝐏(𝝀)

𝐇𝐠(𝒎,𝒏,𝑴,𝑵)

𝐙𝐢𝐩𝐟(𝜶)

𝐔(𝒂, 𝒃)

𝐄𝐱𝐩(𝝀)
𝜷(𝒂, 𝒃)

…



Probability theory
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Probability theory
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10 + sin(𝑁 0, 2 ⋅ 𝐵 0.1 )

𝐹(𝑈 0,1 )



Probability theory

from numpy.random import beta, binomial, 

chisquare, dirichlet, exponential, f, gamma, 

geometric, gumbel, hypergeometric, ...

>>> numpy.random.seed(1)

>>> binomial(10, 0.2)

::: 2
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Probability theory

from scipy.stats.distributions import beta, 

binom, chisquare, ...

>>> numpy.random.seed(1)

>>> X = binom(10, 0.2)

>>> X.rvs()

::: 2

>>> X.pmf(2), X.cdf(2), X.mean(), X.std(), …
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Everything is Probabilistic?

What is your height?
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Everything is Probabilistic?

What is your height?

Is it a fixed number?

 Frequentist:  Yes, it is, we 

just don’t know it precisely.

 Bayesian: No, it is not. 

It is a distribution.
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Everything is Probabilistic?

What is your height?

Is it a fixed number?

 Frequentist:  Yes, it is, we 

just don’t know it precisely.

 Bayesian: No, it is not. 

It is a distribution.

In any case, we need 

probabilistic reasoning.

IFI Summer School.                   

June 2014



Statistics & Decision Theory

 Statistics

 How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

 Decision theory

 How do we use a probabilistic model to predict?
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Statistics & Decision Theory

 Decision theory

 How do we use a probabilistic model to predict?
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Quiz

 Model, trained on the training set might work 

well on the test set because:

 Because we assume a single underlying mechanism.

 Because we use statistical inference to infer the 

mechanism.

 Because we use decision theory to produce optimal 

decisions.
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Quiz
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??????

Space of candidate models



Statistics
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Statistics
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Hypothesis testing

P or not?



Statistics
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??????
??????
??????
?????X

Model selection



Statistics
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Parameter inference

𝑷 𝑿 𝜽)



Parameter inference

Biased coin
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a

1,1,0,1,1
X P(X)

1 p

0 1-p

Be(𝑝)

𝑛1 = 4
𝑛0 = 1



Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.5)

 Data: 1,1,0,1,1

 Likelihood: ?
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Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.5)

 Data: 1,1,0,1,1

 Likelihood: 0.5 ⋅ 0.5 ⋅ 0.5 ⋅ 0.5 ⋅ 0.5 = 2−5
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0.03125



Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.2)

 Data: 1,1,0,1,1

 Likelihood: ?
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Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.2)

 Data: 1,1,0,1,1

 Likelihood: 0.2 ⋅ 0.2 ⋅ 0.8 ⋅ 0.2 ⋅ 0.2 = 0.24 ⋅ 0.8
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0.00128



Maximum Likelihood Estimation

 Example:

 Model: Be(p)

 Data: 1,1,0,1,1

 Likelihood: 𝑝 ⋅ 𝑝 ⋅ (1 − 𝑝) ⋅ 𝑝 ⋅ 𝑝 = 𝑝𝑛1 1 − 𝑝 𝑛0
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Maximum Likelihood Estimation

 Example:

 Model: Be(p)

 Data: 1,1,0,1,1

 Likelihood: 𝑝 ⋅ 𝑝 ⋅ (1 − 𝑝) ⋅ 𝑝 ⋅ 𝑝 = 𝑝𝑛1 1 − 𝑝 𝑛0
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 𝑝 =
𝑛1

𝑛0 + 𝑛1



Maximum Likelihood Estimation

 Maximum Likelihood Estimation:
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argmaxModel Pr Data Model)



Problems of MLE

 You are on a trip in an exotic country and you 

meet a person who happens to be from 

Switzerland.

 Is he a member of the Swiss Parliament?

IFI Summer School.                   

June 2014



Problems of MLE

 Data:  “X is from Switzerland”

 Models: 
 “X is a member of Swiss Parliament”, 

 “X is not a member of Swiss Parliament”
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 Likelihoods:
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Problems of MLE
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MLE treats all candidate models 

as equal and can thus overfit



Maximum A-posteriori Estimation

 Maximum Likelihood Estimate (MLE):

 Maximum A-posteriori Estimate (MAP):
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argmaxModel Pr Data Model)

argmaxModel Pr Model Data)



MAP Estimation

argmaxModel Pr Model Data)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)

argmaxModel Pr Data Model) ⋅ Pr(Model)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)

argmaxModel Pr Data Model) ⋅ Pr(Model)
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Likelihood Model prior

Model posterior



Summary

 Maximum Likelihood Estimate (MLE):

 Maximum A-posteriori Estimate (MAP):
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argmaxModel Pr Data Model)

argmaxModel Pr Data Model) Pr(Model)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1

IFI Summer School.                   

June 2014

Likelihood: 𝑝4(1 − 𝑝) Prior: 𝑈(0,1)

 𝑝𝑀𝐴𝑃 =  𝑝𝑀𝐿𝐸 =
𝑛1

𝑛0 + 𝑛1



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1

IFI Summer School.                   

June 2014

Likelihood: 𝑝4(1 − 𝑝) Prior: Beta(2, 2)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝) Prior: Beta(2, 2)

 𝑝𝑀𝐴𝑃 =
𝑛1 + 1

𝑛0 + 𝑛1 + 2



MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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argmin𝒘 Error Data,𝒘 + Complexity(𝒘)



Problems of MAP estimation
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Problems of MAP estimation
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Problems of MAP estimation
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?



Bayesian estimation

 Pick the model with minimal expected risk

E Model Data)
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Bayesian estimation

 Pick the model with minimal expected risk

E Model Data)
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Bayesian estimation +

 Use the full posterior distribution

Pr Model Data)
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Quiz

 Three major model inference methods are:
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Linear Regression (again)
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𝑁(0, 𝜎2)

Normal distribution

𝑓 𝑥 =
1

2𝜋𝜎2
exp −

1

2

𝑥2

𝜎2



Linear Regression (again)
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𝑌 = 𝒘𝑻𝒙 + 𝑁(0, 𝜎2)𝒙



𝑌 = 𝒘𝑇𝒙 + 𝑁(0, 𝜎2)
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𝑌 = 𝒘𝑇𝒙 + 𝑁 0, 𝜎2

𝑒 = 𝑌 − 𝒘𝑇𝒙 ∼ 𝑁(0, 𝜎2)
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𝑌 = 𝒘𝑇𝒙 + 𝑁 0, 𝜎2

𝑒 = 𝑌 − 𝒘𝑇𝒙 ∼ 𝑁(0, 𝜎2)

Pr (𝑥, 𝑦) 𝒘, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2

𝑒2

𝜎2
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Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

=  

𝑖

1

2𝜋𝜎2
exp −

1

2

𝑒𝑖
2

𝜎2
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Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝  

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2

=  

𝑖

−
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2

=  

𝑖

−
1

2

𝑒𝑖
2

𝜎2

= −
1

2𝜎2
 

𝑖

𝑒𝑖
2
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MLE and OLS

argmax𝐰 LogLikelihood Data,𝒘 = argmin𝐰  

𝑖

𝑒𝑖
2
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Linear Regression + MAP

Pr 𝒘 Data ∝ Pr Data 𝒘 ⋅ Pr(𝒘)
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Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr(𝒘)
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Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr(𝒘)
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

Pr 𝑤𝑗 ∝ exp −
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

Pr 𝒘 ∝  

𝑗

exp −
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝  

𝑗

−
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝ − 

𝑗

𝑤𝑗
2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝ − 

𝑗

𝑤𝑗
2
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− 

𝑖

𝑒𝑖
2 − 

𝑗

𝑤𝑗
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘
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− 

𝑖

𝑒𝑖
2 − 

𝑗

𝑤𝑗
2

Loss  Error distribution Penalty Model prior
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MLE MAP
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OLS Regression Ridge Regression



Summary
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?
MLE MAP

Loss  Error 

distribution

Penalty Model prior

Loss  Error 

distribution
+

OLS Regression Ridge Regression

ℓ𝟐-loss/penalty  Normal distribution



Summary

 Probability for modeling

 Statistics for estimation

 Decision theory for prediction
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MLE MAP



Decision Theory
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X P(X)

spam 0.8

valid 0.2

Email



Decision Theory

IFI Summer School.                   

June 2014

Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8

valid 0.2

Decision



Decision Theory
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Decision Theory
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Decision Theory
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Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8 0 1

valid 0.2 5 0

Expected Risk 1 0.8

Decision



Decision Theory
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Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8 0 1

valid 0.2 5 0

Expected Risk 1 0.8

Decision



Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦
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Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦
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Email
Model

SPAM,

VALID
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5   0



Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦

𝑅  𝑦|𝑥 =  
𝑦

ℓ  𝑦, 𝑦 𝑑𝐹 𝑦 𝑥
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Email
Model

SPAM,

VALID

spam,

valid

0   1

5   0



Bayesian Classifier

 Optimal classifier:
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For a given 𝑥 and a conditional probabilistic model

Pr(𝑦|𝑥)
predict  𝑦, that has the smallest expected risk.



Bayesian Classifier

 Optimal classifier:

For symmetric risk ℓ, this corresponds to 

picking the option with the highest probability.
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0  1

1  0

For a given 𝑥 and a conditional probabilistic model

Pr(𝑦|𝑥)
predict  𝑦, that has the smallest expected risk.



Summary

 Probability for modeling

 Statistics for estimation

 Decision theory for prediction
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MLE MAP

Bayesian Classifier



The Tennis Dataset
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Shall we play tennis today?
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Shall we play tennis today?
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Pr(Yes) = 9/14 = 0.64

Pr(No) = 5/14 = 0.36

Yes

Estimate a 

probabilistic model 

and predict:



It’s windy today. Tennis, anyone?
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It’s windy today. Tennis, anyone?
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Pr(Yes | Weak) = 6/8

Pr(No | Weak) = 2/8

Pr(Yes | Strong) = 3/6

Pr(No | Strong) = 3/6 



More attributes
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Pr(Yes | High,Weak) = 2/4

Pr(No | High,Weak) = 2/4

Pr(Yes | High,Strong) = 1/3

Pr(No | High,Strong) = 2/3

… 



The Bayesian Classifier

In general:

1. Estimate from data:

Pr Class 𝑥1, 𝑥2, 𝑥3, … )

2. For a given instance (𝑥1, 𝑥2, 𝑥3, … )
predict class whose conditional 

probability is greater:

Pr C1 𝑥1, 𝑥2, 𝑥3, … ) > Pr C2 𝑥1, 𝑥2, 𝑥3, … )
 predict C1
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Problem
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Pr(Yes | High,Weak) = 2/4

Pr(No | High,Weak) = 2/4

Pr(Yes | High,Strong) = 1/3

Pr(No | High,Strong) = 2/3

… 

 We need exponential amount of data



Naïve Bayes Classifier

To scale beyond 2-3 attributes, use a hack:

Assume that attributes are independent 

within each class:
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June 2014

Pr(𝑥1, 𝑥2, 𝑥3 | Class)
= Pr(𝑥1|Class)Pr(𝑥2|Class)Pr(𝑥3|Class)…



Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1

4. Pr C1 ⋅ Pr 𝑥1 C1 Pr 𝑥2 C1 …Pr 𝑥𝑚 C1 >
Pr C2 ⋅ Pr 𝑥1 C2 Pr 𝑥2 C2 …Pr 𝑥𝑚 C2

 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1

4. Pr C1 ⋅ Pr 𝑥1 C1 Pr 𝑥2 C1 …Pr 𝑥𝑚 C1 >
Pr C2 ⋅ Pr 𝑥1 C2 Pr 𝑥2 C2 …Pr 𝑥𝑚 C2

 predict C1
IFI Summer School.                   
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Naïve Bayes Classifier

 Works for both discrete and continuous attributes.

 The goods:

 Easy to implement,  efficient

 Won’t overfit, intepretable

 Works better than you would expect (e.g. spam filtering)

 The bads

 “Naïve”, linear

 Usually won’t work well for too many classes

 Not a good probability estimator
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Naïve Bayes Classifier

from sklearn.naive_bayes import

BernoulliNB,

MultinomialNB,

GaussianNB
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Quiz

 MLE:

argmaxModel________________

 MAP:

argmaxModel________________

 Gaussian distribution:

𝑓 𝑥 = const × exp(_______)
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Quiz

 Bayesian classifier has optimal ____________

 Naïve Bayesian classifier assumption:

 Pr(𝐶|𝑥1, 𝑥2) = Pr 𝐶 𝑥1 Pr(𝐶|𝑥2)

 Pr 𝑥1, 𝑥2 𝐶 = Pr(𝑥1|𝐶) Pr(𝑥2|𝐶)

 Pr(𝐶1, 𝐶2|𝑥) = Pr 𝐶1 𝑥 Pr(𝐶2|𝑥)

 Pr(𝑥|𝐶1, 𝐶2) = Pr(𝑥|𝐶1) Pr(𝑥|𝐶2)
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 All machine learning methods we have 

considered so far rely on MLE or MAP

 Yes

 No
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The Land of Machine Learning
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Optimization

Probability theory

Reasoning by analogy

Dragons



Questions?
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http://xkcd.com/552/


