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The Land of Machine Learning
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Optimization

Probability theory

Reasoning by analogy

Dragons



So faré

}Machine learning is important and 

interesting

}The general concept:
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So faré

}Instance-based methods

}Tree learning methods

}The òsouló of machine learning:

}Particular models:

}OLS regression (Љ-loss, π-penaltyregression)

}Ridge regression (Љ-loss, Љ-penalty regression)
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Next

Why should the model, 

tuned on the training set , 

generalize to the test set?
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The òNo Free Lunchó Principle

Learning purely from data is, in general, impossible

X Y Output

0 0 False

0 1 True

1 0 True

1 1 ?
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The òNo Free Lunchó Principle

Learning purely from data is, in general, impossible

}Is it good or bad?
}

}What should we do to enable learning?
}

IFI Summer School.                   

June 2014



The òNo Free Lunchó Principle

Learning purely from data is, in general, impossible

}Is it good or bad?
}Good for cryptographers, bad for data miners

}What should we do to enable learning?
} Introduce assumptions about data (òinductive biasó):  

1. How does existing data relate to the future data?

2. What is the system we are learning?
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How does existing data relate to future data?
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?

Training set

Test set
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heads,

heads,

tails,

heads,

tails,

é

X P(X)

heads 0.5

tails 0.5
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Probability theory
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Probability theory
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Probability theory
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Probability theory

from numpy.random import beta, binomial, 

chisquare , dirichlet , exponential, f, gamma, 

geometric, gumbel , hypergeometric , ...

>>> numpy.random.seed (1)

>>> binomial(10, 0.2 )

::: 2
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Probability theory

from scipy.stats.distributions import beta, 

binom , chisquare , ...

>>> numpy.random.seed (1)

>>> X = binom (10, 0.2)

>>> X.rvs ()

::: 2

>>> X.pmf (2), X.cdf (2), X.mean (), X.std (), é
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Everything is Probabilistic?

What is your height?
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Everything is Probabilistic?

What is your height?

Is it a fixed number?
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Everything is Probabilistic?

What is your height?

Is it a fixed number?

}Frequentist:  Yes, it is , we 

just donõt know it precisely.

}Bayesian: No, it is not . 

It is a distribution .
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Everything is Probabilistic?

What is your height?

Is it a fixed number?

}Frequentist:  Yes, it is , we 

just donõt know it precisely.

}Bayesian: No, it is not . 

It is a distribution .

In any case, we need 

probabilistic reasoning.
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Statistics & Decision Theory

}Statistics

}How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

}Statistics

}How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

}Decision theory

}How do we use a probabilistic modelto predict ?
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Statistics & Decision Theory

}Decision theory

}How do we use a probabilistic modelto predict ?
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Quiz

}Model, trained on the training set might work 

well on the test set because:

}Because we assume a single underlying mechanism.

}Because we use statistical inference to infer the 

mechanism.

}Because we use decision theory to produce optimal 

decisions.
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Quiz
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Statistics
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Statistics
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Space of candidate models
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Statistics
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Hypothesis testing

P or not?



Statistics
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Model selection



Statistics
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Parameter inference

Biased coin
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Maximum Likelihood Estimation

}Data Likelihood: 

0Ò$ÁÔÁ-ÏÄÅÌ

}Example:

}Model: Be(0.5)

}Data: ρȟρȟπȟρȟρ

}Likelihood: ?
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Maximum Likelihood Estimation

}Data Likelihood: 

0Ò$ÁÔÁ-ÏÄÅÌ

}Example:

}Model: Be(0.5)

}Data: ρȟρȟπȟρȟρ

}Likelihood: πȢυẗπȢυẗπȢυẗπȢυẗπȢυ ς
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Maximum Likelihood Estimation

}Data Likelihood: 

0Ò$ÁÔÁ-ÏÄÅÌ

}Example:

}Model: Be(0.2)

}Data: ρȟρȟπȟρȟρ

}Likelihood: ?
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Maximum Likelihood Estimation

}Data Likelihood: 

0Ò$ÁÔÁ-ÏÄÅÌ

}Example:

}Model: Be(0.2)

}Data: ρȟρȟπȟρȟρ

}Likelihood: πȢςẗπȢςẗπȢψẗπȢςẗπȢς πȢςẗπȢψ
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Maximum Likelihood Estimation

}Example:

}Model: Be(p)

}Data: ρȟρȟπȟρȟρ

}Likelihood: ὴẗὴẗρ ὴẗὴẗὴ ὴ ρ ὴ
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Maximum Likelihood Estimation

}Example:

}Model: Be(p)

}Data: ρȟρȟπȟρȟρ

}Likelihood: ὴẗὴẗρ ὴẗὴẗὴ ὴ ρ ὴ
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Maximum Likelihood Estimation

}Maximum Likelihood Estimation:
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