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Reasoning by analogy

Dragons



So far…

 Machine learning is important and 

interesting

 The general concept:
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Probability

Theory



So far…

 Instance-based methods

 Tree learning methods

 The “soul” of machine learning:

 Particular models:

 OLS regression (ℓ2-loss, 0-penalty regression)

 Ridge regression (ℓ2-loss, ℓ2-penalty regression)
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argmin𝒘 Error Data, 𝒘 + 𝜆 Complexity(𝒘)



Next

Why should the model, 

tuned on the training set, 

generalize to the test set?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

X Y Output

0 0 False

0 1 True

1 0 True

1 1 ?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

 Is it good or bad?


 What should we do to enable learning?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible

 Is it good or bad?
 Good for cryptographers, bad for data miners

 What should we do to enable learning?
 Introduce assumptions about data (“inductive bias”):  

1. How does existing data relate to the future data?

2. What is the system we are learning?
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How does existing data relate to future data?
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?

Training set

Test set
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heads,

heads,

tails,

heads,

tails,

…

X P(X)

heads 0.5

tails 0.5
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𝑓 𝒙 =
1

2𝜋
exp −

𝒙 2

2



Probability theory
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𝐁(𝒏, 𝒑)

𝐁𝐞(𝒑)

𝑵(𝝁, 𝚺)𝐏(𝝀)

𝐇𝐠(𝒎,𝒏,𝑴,𝑵)

𝐙𝐢𝐩𝐟(𝜶)

𝐔(𝒂, 𝒃)

𝐄𝐱𝐩(𝝀)
𝜷(𝒂, 𝒃)

…



Probability theory
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Probability theory
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10 + sin(𝑁 0, 2 ⋅ 𝐵 0.1 )

𝐹(𝑈 0,1 )



Probability theory

from numpy.random import beta, binomial, 

chisquare, dirichlet, exponential, f, gamma, 

geometric, gumbel, hypergeometric, ...

>>> numpy.random.seed(1)

>>> binomial(10, 0.2)

::: 2
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Probability theory

from scipy.stats.distributions import beta, 

binom, chisquare, ...

>>> numpy.random.seed(1)

>>> X = binom(10, 0.2)

>>> X.rvs()

::: 2

>>> X.pmf(2), X.cdf(2), X.mean(), X.std(), …
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Everything is Probabilistic?

What is your height?
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Everything is Probabilistic?

What is your height?

Is it a fixed number?
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Everything is Probabilistic?

What is your height?

Is it a fixed number?

 Frequentist:  Yes, it is, we 

just don’t know it precisely.

 Bayesian: No, it is not. 

It is a distribution.

IFI Summer School.                   

June 2014



Everything is Probabilistic?

What is your height?

Is it a fixed number?

 Frequentist:  Yes, it is, we 

just don’t know it precisely.

 Bayesian: No, it is not. 

It is a distribution.

In any case, we need 

probabilistic reasoning.
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Statistics & Decision Theory

 Statistics

 How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

 Statistics

 How do we infer a probabilistic model based on data?
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 Statistics

 How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

 Decision theory

 How do we use a probabilistic model to predict?
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Statistics & Decision Theory

 Decision theory

 How do we use a probabilistic model to predict?
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Quiz

 Model, trained on the training set might work 

well on the test set because:

 Because we assume a single underlying mechanism.

 Because we use statistical inference to infer the 

mechanism.

 Because we use decision theory to produce optimal 

decisions.
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Quiz

IFI Summer School.                   

June 2014

?



Statistics

IFI Summer School.                   

June 2014

?



Statistics
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??????
??????
??????
??????

Space of candidate models



Statistics
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Statistics
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Hypothesis testing

P or not?



Statistics
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??????
??????
??????
?????X

Model selection



Statistics
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Parameter inference

𝑷 𝑿 𝜽)



Parameter inference

Biased coin
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a

1,1,0,1,1
X P(X)

1 p

0 1-p

Be(𝑝)

𝑛1 = 4
𝑛0 = 1



Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.5)

 Data: 1,1,0,1,1

 Likelihood: ?
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Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.5)

 Data: 1,1,0,1,1

 Likelihood: 0.5 ⋅ 0.5 ⋅ 0.5 ⋅ 0.5 ⋅ 0.5 = 2−5
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0.03125



Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.2)

 Data: 1,1,0,1,1

 Likelihood: ?
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Maximum Likelihood Estimation

 Data Likelihood: 

Pr Data Model]

 Example:

 Model: Be(0.2)

 Data: 1,1,0,1,1

 Likelihood: 0.2 ⋅ 0.2 ⋅ 0.8 ⋅ 0.2 ⋅ 0.2 = 0.24 ⋅ 0.8
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0.00128



Maximum Likelihood Estimation

 Example:

 Model: Be(p)

 Data: 1,1,0,1,1

 Likelihood: 𝑝 ⋅ 𝑝 ⋅ (1 − 𝑝) ⋅ 𝑝 ⋅ 𝑝 = 𝑝𝑛1 1 − 𝑝 𝑛0

IFI Summer School.                   

June 2014



Maximum Likelihood Estimation

 Example:

 Model: Be(p)

 Data: 1,1,0,1,1

 Likelihood: 𝑝 ⋅ 𝑝 ⋅ (1 − 𝑝) ⋅ 𝑝 ⋅ 𝑝 = 𝑝𝑛1 1 − 𝑝 𝑛0
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 𝑝 =
𝑛1

𝑛0 + 𝑛1



Maximum Likelihood Estimation

 Maximum Likelihood Estimation:
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argmaxModel Pr Data Model)



Problems of MLE

 You are on a trip in an exotic country and you 

meet a person who happens to be from 

Switzerland.

 Is he a member of the Swiss Parliament?
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Problems of MLE

 Data:  “X is from Switzerland”

 Models: 
 “X is a member of Swiss Parliament”, 

 “X is not a member of Swiss Parliament”
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Problems of MLE

 Data:  “X is from Switzerland”

 Models: 
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 Likelihoods:
 P(X is from Switzerland | X is a member of SP) = 

 P(X is from Switzerland | X is not a member of SP) = 
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Problems of MLE
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 Models: 
 “X is a member of Swiss Parliament”, 

 “X is not a member of Swiss Parliament”

 Likelihoods:
 P(X is from Switzerland | X is a member of SP) = 1

 P(X is from Switzerland | X is not a member of SP) = 
8

7000
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Problems of MLE
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 Models: 
 “X is a member of Swiss Parliament”, 

 “X is not a member of Swiss Parliament”

 Likelihoods:
 P(X is from Switzerland | X is a member of SP) = 1

 P(X is from Switzerland | X is not a member of SP) = 
8

7000
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MLE treats all candidate models 

as equal and can thus overfit



Maximum A-posteriori Estimation

 Maximum Likelihood Estimate (MLE):

 Maximum A-posteriori Estimate (MAP):
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argmaxModel Pr Data Model)

argmaxModel Pr Model Data)



MAP Estimation

argmaxModel Pr Model Data)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)

argmaxModel Pr Data Model) ⋅ Pr(Model)
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MAP Estimation

argmaxModel Pr Model Data)

argmaxModel
Pr(Model, Data)

Pr(Data)

argmaxModel Pr(Model, Data)

argmaxModel Pr Data Model) ⋅ Pr(Model)
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Likelihood Model prior

Model posterior



Summary

 Maximum Likelihood Estimate (MLE):

 Maximum A-posteriori Estimate (MAP):
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argmaxModel Pr Data Model)

argmaxModel Pr Data Model) Pr(Model)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝) Prior: 𝑈(0,1)

 𝑝𝑀𝐴𝑃 =  𝑝𝑀𝐿𝐸 =
𝑛1

𝑛0 + 𝑛1



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝) Prior: Beta(2, 2)



MAP Estimation

 Model: Be(p)               Data: 1,1,0,1,1
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Likelihood: 𝑝4(1 − 𝑝) Prior: Beta(2, 2)

 𝑝𝑀𝐴𝑃 =
𝑛1 + 1

𝑛0 + 𝑛1 + 2



MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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MAP Estimation

argmaxModel Pr Data Model) ⋅ Pr(Model)

argmaxModel log (Pr Data Model) ⋅ Pr(Model))

argmaxModel log Pr(Data|Model) + log Pr(Model)
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argmin𝒘 Error Data,𝒘 + Complexity(𝒘)



Problems of MAP estimation
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Problems of MAP estimation
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Problems of MAP estimation
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?



Bayesian estimation

 Pick the model with minimal expected risk

E Model Data)
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Bayesian estimation

 Pick the model with minimal expected risk

E Model Data)
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Bayesian estimation +

 Use the full posterior distribution

Pr Model Data)
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Quiz

 Three major model inference methods are:
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Linear Regression (again)
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𝑁(0, 𝜎2)

Normal distribution

𝑓 𝑥 =
1

2𝜋𝜎2
exp −

1

2

𝑥2

𝜎2



Linear Regression (again)
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𝑌 = 𝒘𝑻𝒙 + 𝑁(0, 𝜎2)𝒙



𝑌 = 𝒘𝑇𝒙 + 𝑁(0, 𝜎2)
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𝑌 = 𝒘𝑇𝒙 + 𝑁 0, 𝜎2

𝑒 = 𝑌 − 𝒘𝑇𝒙 ∼ 𝑁(0, 𝜎2)
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𝑌 = 𝒘𝑇𝒙 + 𝑁 0, 𝜎2

𝑒 = 𝑌 − 𝒘𝑇𝒙 ∼ 𝑁(0, 𝜎2)

Pr (𝑥, 𝑦) 𝒘, 𝜎2 =
1

2𝜋𝜎2
exp −

1

2

𝑒2

𝜎2
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Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

=  

𝑖

1

2𝜋𝜎2
exp −

1

2

𝑒𝑖
2

𝜎2
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Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝  

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2

=  

𝑖

−
1

2

𝑒𝑖
2

𝜎2
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log Pr 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , (𝑥𝑛, 𝑦𝑛) 𝒘, 𝜎2

∝ log 

𝑖

exp −
1

2

𝑒𝑖
2

𝜎2

=  

𝑖

−
1

2

𝑒𝑖
2

𝜎2

= −
1

2𝜎2
 

𝑖

𝑒𝑖
2
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MLE and OLS

argmax𝐰 LogLikelihood Data,𝒘 = argmin𝐰  

𝑖

𝑒𝑖
2
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Linear Regression + MAP

Pr 𝒘 Data ∝ Pr Data 𝒘 ⋅ Pr(𝒘)
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Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr(𝒘)
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Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr(𝒘)
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

Pr 𝑤𝑗 ∝ exp −
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

Pr 𝒘 ∝  

𝑗

exp −
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝  

𝑗

−
𝑤𝑗

2

2𝛼2
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− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝ − 

𝑗

𝑤𝑗
2

IFI Summer School.                   

June 2014

− 

𝑖

𝑒𝑖
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘

Let the prior on 𝑤𝑗 be Gaussian:

log Pr 𝒘 ∝ − 

𝑗

𝑤𝑗
2
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− 

𝑖

𝑒𝑖
2 − 

𝑗

𝑤𝑗
2



Linear Regression + MAP

log Pr 𝒘 Data ∝ log Pr Data 𝒘 + log Pr 𝒘
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− 

𝑖

𝑒𝑖
2 − 

𝑗

𝑤𝑗
2

Loss  Error distribution Penalty Model prior



Summary
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MLE MAP
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OLS Regression Ridge Regression



Summary
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?
MLE MAP

Loss  Error 

distribution

Penalty Model prior

Loss  Error 

distribution
+

OLS Regression Ridge Regression

ℓ𝟐-loss/penalty  Normal distribution



Summary

 Probability for modeling

 Statistics for estimation

 Decision theory for prediction
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MLE MAP



Decision Theory
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X P(X)

spam 0.8

valid 0.2

Email



Decision Theory
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spam 0.8

valid 0.2

Decision



Decision Theory
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Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8 0 1

valid 0.2 5 0

Decision



Decision Theory
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Decision Theory
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Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8 0 1

valid 0.2 5 0

Expected Risk 1 0.8

Decision



Decision Theory
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Model

X P(X)

spam 0.8

valid 0.2

Email

X P(X) SPAM VALID

spam 0.8 0 1

valid 0.2 5 0

Expected Risk 1 0.8

Decision



Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦
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Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦
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Email
Model

SPAM,

VALID

spam,

valid

0   1

5   0



Expected Risk (Supervised Learning)

𝑅  𝑦|𝑥 =  

𝑦

Pr 𝑦|𝑥 ℓ  𝑦, 𝑦

𝑅  𝑦|𝑥 =  
𝑦

ℓ  𝑦, 𝑦 𝑑𝐹 𝑦 𝑥
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Email
Model

SPAM,

VALID

spam,

valid

0   1

5   0



Bayesian Classifier

 Optimal classifier:
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For a given 𝑥 and a conditional probabilistic model

Pr(𝑦|𝑥)
predict  𝑦, that has the smallest expected risk.



Bayesian Classifier

 Optimal classifier:

For symmetric risk ℓ, this corresponds to 

picking the option with the highest probability.
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0  1

1  0

For a given 𝑥 and a conditional probabilistic model

Pr(𝑦|𝑥)
predict  𝑦, that has the smallest expected risk.



Summary

 Probability for modeling

 Statistics for estimation

 Decision theory for prediction
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MLE MAP

Bayesian Classifier



The Tennis Dataset
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Shall we play tennis today?
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Shall we play tennis today?
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Pr(Yes) = 9/14 = 0.64

Pr(No) = 5/14 = 0.36

Yes

Estimate a 

probabilistic model 

and predict:



It’s windy today. Tennis, anyone?
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It’s windy today. Tennis, anyone?
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Pr(Yes | Weak) = 6/8

Pr(No | Weak) = 2/8

Pr(Yes | Strong) = 3/6

Pr(No | Strong) = 3/6 



More attributes
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Pr(Yes | High,Weak) = 2/4

Pr(No | High,Weak) = 2/4

Pr(Yes | High,Strong) = 1/3

Pr(No | High,Strong) = 2/3

… 



The Bayesian Classifier

In general:

1. Estimate from data:

Pr Class 𝑥1, 𝑥2, 𝑥3, … )

2. For a given instance (𝑥1, 𝑥2, 𝑥3, … )
predict class whose conditional 

probability is greater:

Pr C1 𝑥1, 𝑥2, 𝑥3, … ) > Pr C2 𝑥1, 𝑥2, 𝑥3, … )
 predict C1
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Problem
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Pr(Yes | High,Weak) = 2/4

Pr(No | High,Weak) = 2/4

Pr(Yes | High,Strong) = 1/3

Pr(No | High,Strong) = 2/3

… 

 We need exponential amount of data



Naïve Bayes Classifier

To scale beyond 2-3 attributes, use a hack:

Assume that attributes are independent 

within each class:
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Pr(𝑥1, 𝑥2, 𝑥3 | Class)
= Pr(𝑥1|Class)Pr(𝑥2|Class)Pr(𝑥3|Class)…



Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1
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Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1

4. Pr C1 ⋅ Pr 𝑥1 C1 Pr 𝑥2 C1 …Pr 𝑥𝑚 C1 >
Pr C2 ⋅ Pr 𝑥1 C2 Pr 𝑥2 C2 …Pr 𝑥𝑚 C2

 predict C1
IFI Summer School.                   

June 2014



Naïve Bayes Classifier

1. Pr C1 𝒙 > Pr(C2|𝒙)
 predict C1

2.
Pr C1 Pr 𝒙 C1

Pr 𝒙
>

Pr C2 Pr 𝒙 C2

Pr 𝒙

 predict C1

3. Pr C1 Pr 𝒙 C1 > Pr C2 Pr 𝒙 C2

 predict C1

4. Pr C1 ⋅ Pr 𝑥1 C1 Pr 𝑥2 C1 …Pr 𝑥𝑚 C1 >
Pr C2 ⋅ Pr 𝑥1 C2 Pr 𝑥2 C2 …Pr 𝑥𝑚 C2

 predict C1
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Naïve Bayes Classifier

 Works for both discrete and continuous attributes.

 The goods:

 Easy to implement,  efficient

 Won’t overfit, intepretable

 Works better than you would expect (e.g. spam filtering)

 The bads

 “Naïve”, linear

 Usually won’t work well for too many classes

 Not a good probability estimator

IFI Summer School.                   

June 2014



Naïve Bayes Classifier

from sklearn.naive_bayes import

BernoulliNB,

MultinomialNB,

GaussianNB
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Quiz

 MLE:

argmaxModel________________

 MAP:

argmaxModel________________

 Gaussian distribution:

𝑓 𝑥 = const × exp(_______)
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Quiz

 Bayesian classifier has optimal ____________

 Naïve Bayesian classifier assumption:

 Pr(𝐶|𝑥1, 𝑥2) = Pr 𝐶 𝑥1 Pr(𝐶|𝑥2)

 Pr 𝑥1, 𝑥2 𝐶 = Pr(𝑥1|𝐶) Pr(𝑥2|𝐶)

 Pr(𝐶1, 𝐶2|𝑥) = Pr 𝐶1 𝑥 Pr(𝐶2|𝑥)

 Pr(𝑥|𝐶1, 𝐶2) = Pr(𝑥|𝐶1) Pr(𝑥|𝐶2)
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 All machine learning methods we have 

considered so far rely on MLE or MAP

 Yes

 No
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The Land of Machine Learning
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Optimization

Probability theory

Reasoning by analogy

Dragons



Questions?
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http://xkcd.com/552/


