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» Machine learning is important and
Interesting

» The general concept:

Fitting models to data
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Interesting

» The general concept:

‘ Fitting models to data \
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» Instance-based methods
» Tree learning methods
» The “soul” of machine learning:

argmin,, Error(Data, w) + A Complexity(w)

» Particular models:

OLS regression (¢,-loss, 0-penalty regression)
Ridge regression (¥,-loss, ¥,-penalty regression)
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Why should the model,
tuned on the training set,

generalize to the test set!
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The “No Free Lunch” Principle %

Learning purely from data is, in general, impossible
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible
» Is it good or bad?

» What should we do to enable learning!?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible
» Is it good or bad?

Good for cryptographers, bad for data miners

» What should we do to enable learning!?

Introduce assumptions about data (“inductive bias”™):
How does existing data relate to the future data?

What is the system we are learning?
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The “No Free Lunch” Principle

Learning purely from data is, in general, impossible
» Is it good or bad?

Good for cryptographers, bad for data miners
» What should we do to enable learning?
Intraduce assumptions about data (“indictive bias”)-

How does existing data relate to the future data?

What is the system we are learning?
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How does existing data relate to future data?

Trai set
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Probability theory f*@»

Hg(m,n,M,N)
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VeT-E Probability distributions [hide]
Discrete univariate with finite support [hide]

Benford - Bernoulli - Beta-binomial - binomial - categerical - hypergeometric - Poizson binomial - Rademacher - discrete uniform - Zipf - Zipf-Mandelbrot
Discrete univariate with infinite support [hide]

beta negative binomial - Boltzmann - Conway-Maxwel-Poizzon - discrete phase-type - Delaporte - extended negative binomial - Gauss—Kuzmin - geometric -
logarithmic - negative binomial - parabolic fractal - Poizson - Skellam - Yule=Simon - zeta

Continuous univariate supported on a bounded interval, e.g. [0,1] [hide]

Arceine - ARGUS - Balding-Micholz - Bates - Beta - Beta rectangular - Irwin—Hall - Kumaraswarmy - lagit-normal - Noncentral beta - raized cosine - triangular -
U-guadratic - uniform - Wigner semicircle

Continuous univariate supported on a semi-infinite interval, usually [0,=) [hide]

Benini - Benktander 1=t kind - Benktander 2nd kind - Beta prime - Bose—Einstein - Burr - chi-sgquared - chi - Coxian - Dagum - Davis - Erlang - exponential - F -
Fermi-Dirac - folded normal - Fréchet - Gamma - generalized inverse Gaussian - half-logistic - half-normal - Hoteling's T-squared - hyper-exponential -
hypoexponential - inverse chi-sguared (scaled-inverse-chi-sguared) - inverse Gaussian - inverse gamma - Kolmogorov - Lévy - log-Cauchy - log-Laplace -
lpg-logistic - log-normal - Maxwel-Bottzmann - Maxwell speed - Mittag—Leffler - Nakagami - noncentral chi-squared - Pareto - phase-type - Rayleigh -
relativistic Breit—\Wigner - Rice - Rosin—Rammiler - shifted Gompertz - truncated normal - type-2 Gumbel - Weibull - Wiks' lambda

Continuous univariate supported on the whole real line {—==, =) [hide]

Cauchy - exponential power - Fizher's z - generalized normal - generalized hyperbolic - geometric stable - Gumbel - Heltemark - hyperbelic gecant - Landau - Laplace -

Linnik - legistic - nencentral t - normal (Gaussian) - normakinverse Gaussgian - skew normal - glash - stable - Student's ¢ - tvpe-1 Gumbel - variance-gamma - Voigt
Continuous univariate with support whose type varies [hide]
generalized extreme value - generalized Pareto - Tukey lambda - g-Gaussian - g-exponential - ghifted log-logistic
Mixed continuous-discrete univariate distributions [hide]
rectified Gaussian
Multivariate (joint) [hide]
Dizcrefe: Ewens - multinomial - Dirichlet-multinomial - negative muttinomial

Continuvous: Dirichlet - Generalized Dirichlet - multivariate normal - Multivariate stable - multivariate Student - normal-zcaled inverse gamma - normal-gamma
Matrix-valved: inverze matrix gamma - inverze-¥Wighart - matrix normal - matrix t = matri< gamma - normalk-inverze-VWizhart - normal-Wizhart - Wighart

Directional [hide]
Univariate (circular) directional: Circular uniform - univariate von Mises - wrapped normal = wrapped Cauchy - wrapped exponential + wrapped Léwy
Givariate (sphericalk Kent - Bivariate (foroidaik bivariate von Mizes
Muitivariate: von Mizses—Figher - Bingham
Degenerate and singular [hide]

Degensrate: discrete degenerate - Dirac delta function
Singutars Cantor

Families [hide]
June 2014
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Probability theory R

(10 + sin(N(0,2) - B(O.l)))

F(U(0,1))
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Probability theory LiL

frod numpy .random 4mport beta, binomial,
chisquare, dirichlet, exponential, £, gamma,
geometric, gumbel, hypergeometric,

>>> numpy.random.seed (1)
>>> binomial (10, 0.2)
2
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Probability theory

frod sclipy.stats.distributions Fmport beta,
binom, chisquare,

>>> numpy.random.seed (1)
>>> X = binom (10, 0.2)
>>> X.rvs ()

2

>>> X.pmf (2), X.cdf(2), X.mean(), X.std(),
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Everything is Probabilistic?
What is your height!?
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Everything is Probabilistic?
What is your height!?

Is it a fixed number?
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Everything is Probabilistic?
What is your height!?

Is it a fixed number?

Frequentist: Yes, it is, we
just don’t know it precisely.

Bayesian: No, it is not.
It is a distribution.
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Everything is Probabilistic?
What is your height!?

Is it a fixed number?

Frequentist: Yes, it is, we
just don’t know it precisely.

Bayesian: No, it is not.
It is a distribution.

In any case, we need
probabilistic reasoning.
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Statistics & Decision Theory

» Statistics
How do we infer a probabilistic model based on data?
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Statistics & Decision Theory

» Statistics
How do we infer a probabilistic model based on data!?
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Statistics & Decision Theory

» Statistics

How do we infer a probabilistic model based on data!?
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Statistics & Decision Theory

» Decision theory

How do we use a probabilistic model to predict?
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Statistics & Decision Theory

» Decision theory

How do we use a probabilistic model to predict?
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Quiz

» Model, trained on the training set might work
well on the test set because:

Because we assume a single underlying mechanism.

Because we use statistical inference to infer the
mechanism.

Because we use decision theory to produce optimal
decisions.
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Statistics i

Space of candidate models
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Statistics
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Statistics

Hypothesis testing

e ‘ - or not?
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Statistics

Model selection

A
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Statistics
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Parameter inference
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Parameter inference Fipeine

Biased coin
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Maximum Likelihood Estimation =

» Data Likelihood:
Pr|Data | Model]

» Example:
Model: Be(0.5)
Data: 1,1,0,1,1
Likelihood: ?

IFI Summer School.
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Maximum Likelihood Estimation s

» Data Likelihood:
Pr|Data | Model]

» Example:

Model: Be(0.5)

Data: 1,1,0,1,1

Likelihood: 0.5-0.5-0.5-0.5-0.5=27°
0.03125
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Maximum Likelihood Estimation =

» Data Likelihood:
Pr|Data | Model]

» Example:
Model: Be(0.2)
Data: 1,1,0,1,1
Likelihood: ?
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Maximum Likelihood Estimation s

» Data Likelihood:
Pr|Data | Model]

» Example:

Model: Be(0.2)

Data: 1,1,0,1,1

Likelihood: 0.2 - 0.2 -0.8-0.2-0.2 = 0.2*- 0.8
0.00128

IFI Summer School.
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Maximum Likelihood Estimation %
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» Example:
Model: Be(p)
Data: 1,1,0,1,1
Likelihood:p -p- (1 —p) - p-p = p™ (1 —p)™
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Maximum Likelihood Estlmatlon

» Example:
Model: Be(p)
Data: 1,1,0,1,1

Likelihood: p - p - (1—p) p-p=pt(l—p)to
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Maximum Likelihood Estimation

» Maximum Likelihood Estimation:

argmaxy,ge; Pr(Data [Model)
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Problems of MLE

» You are on a trip in an exotic country and you
meet a person who happens to be from
Switzerland.

» Is he a member of the Swiss Parliament?
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Problems of MLE

» Data: “X is from Switzerland”
» Models:

“Xis a member of Swiss Parliament”,

“Xis not 2a member of Swiss Parliament”
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Problems of MLE

» Data: “X is from Switzerland”
» Models:

“Xis a member of Swiss Parliament”,

“Xis not 2a member of Swiss Parliament”

» Likelihoods:

P(X is from Switzerland | X is a member of SP) =

P(X is from Switzerland | X is not a member of SP) =
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Problems of MLE i

» Data: “X is from Switzerland”
» Models:

“Xis a member of Swiss Parliament”,

“Xis not 2a member of Swiss Parliament”

» Likelihoods:

P(X is from Switzerland | X is a member of SP) =1

P(X is from Switzerland | X is not a member of SP) = %
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Problems of MLE

Y

» Data: “X is from Switzerland”
» Models:

“Xis a member of Swiss Parliament”,

MLE treats all candidate models
»L as equal and can thus overfit

P(X is from Switzerland | X is a member of SP) = 1

P(X is from Switzerland | X is not a member of SP) = %

IFI Summer School.
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Maximum A-posteriori Estimatioft:s

» Maximum Likelihood Estimate (MLE):

argmaxyoge; Pr(Data | )

» Maximum A-posteriori Estimate (MAP):

argmaxyode; Pri( |Data)

IFI Summer School.
June 2014



MAP Estimation

argmaxy,qe; Pr(Model|Data)
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MAP Estimation %®Z§;1{¢§

argmaxy,qe; Pr(Model|Data)

Pr(Model, Data)
Pr(Data)

drgimdXmoedel

argmaxyode; Pr(Model, Data)

IFI Summer School.
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MAP Estimation %Qgi;::ﬁ

argmaxy,qe; Pr(Model|Data)

Pr(Model, Data)

al'gMaXModel pr(Data)

argmaxyode; Pr(Model, Data)

argmaxyoqe; Pr(Data | Model) - Pr(Model)

IFI Summer School.
June 2014
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MAP Estimation
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argmaxyode1| Pr(Model|Data)

Pr(Model, Model posterior
Pr(Data)

drgimdXmoedel

argmaxyode; Pr(Model, Data)

argmaxpyoqe] |IPr(Data | Model) || Pr(Model)

Likelihood Model prior

IFI Summer School.
June 2014



?
»é
—:
=
_T
OO

SN2y
Iy I=
I_
ENsIS

N

(_% Cm

- wWm

>

o,
&

Summary
» Maximum Likelihood Estimate (MLE):
argmaxyoqe; Pr(Data | )

» Maximum A-posteriori Estimate (MAP):

argmaxyoqe; Pr(Data | ) Pr( )
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MAP Estimation
» Model: Be(p) Data: 1,1,0,1,1
Likelihood: p*(1 — p)
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MAP Estimation
» Model: Be(p) Data: 1,1,0,1,1

Likelihood: p*(1 — p) Prior: U(0,1)
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MAP Estimation
» Model: Be(p) Data: 1,1,0,1,1
Likelihood: p*(1 — p)
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Prior: Beta(2, 2)
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MAP Estimation

» Model: Raln) Nata- 1 1 ﬂ’l’l
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MAP Estimation

argmaxy,qe; Pr(Data | Model) -

Pr(Model)
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MAP Estimation
argmaxyoqe; Pr(Data | Model) - Pr(Model)

/{.)

argmaxyoge; 10g (Pr(Data | Model) - Pr(Model))
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MAP Estimation
argmaxyoqe; Pr(Data | Model) - Pr(Model)

/{.)

argmaxyoge; 10g (Pr(Data | Model) - Pr(Model))

argmaxyoge; 10g Pr(Data|Model) + log Pr(Model)
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MAP Estimation gtk
argmaxyoqe; Pr(Data | Model) - Pr(Model)

argmaxyoge; 10g (Pr(Data | Model) - Pr(Model))

argmaxyodel 10g Pr(Data|Model) + log Pr(Model)
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MAP Estimation

argmaxyoqe; Pr(Data | Model) - Pr(Model)

/{.)

argmaxyoge; 10g (Pr(Data | Model) - Pr(Model))

argmaxyodel 10g Pr(Data|Model) + log Pr(Model)

argmin,, Error(Data, w) + Complexity(w)
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Problems of MAP estimation
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Problems of MAP estimation
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Problems of MAP estimation
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Bayesian estimation

» Pick the model with minimal expected risk

E(Model |Data)

[t
=)

7\
: ;/I H"-.,

;
!

/ \

/ H |
- \

0.2 0.4 0.6 0.5 10
p

Posterior (Model)
[ [
e (¥, ]

L=
LA

=
=
=

IFI Summer School.
June 2014



Bayesian estimation

» Pick the model with minimal expected risk

E(Model |Data)
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Bayesian estimation + i

» Use the full posterior distribution

Pr(Model |Data)
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Quiz

» Three major model inference methods are:
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Normal distribution
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Linear Regression (again)

%,

IFI Summer School.
June 2014
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wlix + N(0,0%)

Y =
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Y =wlx+ N(0,0%)

e=Y—wlx~N(0,0?
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Y =wlx+ N(0,0%)

e=Y—wlx~N(0,0?

1 e

1
Pr((x,y)|w,c%) = NoTTs exp (

2 02

|

IFI Summer School.
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Pr((le Y1); (Xz, yZ)i e (Xn, Yn)lwr 0-2)

B 1—[ 1 1ef
R W SV P\ 207
l

IFI Summer School.
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Pr((le Y1); (Xz, yZ)i e (Xn, Yn)lwr 0-2)

1ef
“| Lol 352

l
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log Pr((xq,y1), (x2,¥2),

1ef
X logl_[exp 573
i

e, (6, V)W, 0%)
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lOg Pr((le Y1); (Xz, yZ)I e (Xn, yn)lw; 0-2)

1ef
oclogl_[exp —5 2
i
_z 1ef
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MLE and OLS

argmax,, LogLikelihood(Data, w) = argmin,, Z el-2

l
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Linear Regression + MAP

Pr(w|Data) « Pr(Data|w) -
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Linear Regression + MAP S
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log Pr(w|Data) « log Pr(Data|w) + log Pr(w)
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Linear Regression+MAP
log Pr(w|Data) oqlog Pr(Data|w)

+ log Pr(w)
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Linear Regression-+MAP—
log Pr(w|Data) oq log Pr(Data|w)
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1 log Pr(w)
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Let the prior on w; be Gaussian:

w2
Pr(wj) X exp( 2;2>
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Linear Regression-+MAP—
log Pr(w|Data) oq log Pr(Data|w)
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Let the prior on w; be Gaussian:
2

Pr(w) « 1_[ exp ( ZVZZ>
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Linear Regression-+MAP—
log Pr(w|Data) oq log Pr(Data|w)

1 log Pr(w)

Let the prior on w; be Gaussian:

w2

coprr -

og Pr(w) « Sy
J
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Linear Regression-+MAP—
log Pr(w|Data) oq log Pr(Data|w)
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1 log Pr(w)
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Let the prior on w; be Gaussian:

log Pr(w) o — z sz
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Linear Regression-+MAP—
log Pr(w|Data) oq log Pr(Data|w)

Let the prior on w; be Gaussian:

log Pr(w) o — z sz
J
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Linear Regression+MAP
log Pr(w|Data) oq log Pr(Data|w) Hlog Pr(w)
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Loss <> Error distribution Penalty<~> Model prior
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Sumimary

IFI Summer School.

June 2014



MAP

MLE
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Summary

MLE

Loss <& Error
distribution

MAP

Loss <& Error
distribution

Penalty<> Model prior
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Summary

MLE

Loss <& Error
distribution

OLS Regression

MAP

Loss <& Error
distribution

Penalty<> Model prior

Ridge Regression
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Summary
- I
MLE MAP
Loss <> Error Loss < Error
distribution distribution
Penalty<> Model prior
OLS Regression Ridge Regression

t,-loss/penalty <~ Normal distribution -
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Summary

» Probability for modeling

» Statistics for estimation

MLE

MAP

» Decision theory for prediction

IFI Summer School.
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Decision Theory

1

Email

‘ spam 0.8

valid 0.2
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Decision Theory

Decision

P(X
] » - »
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Decision Theory
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Decision Theory

Decision
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Decision Theory

Decision

P(X
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valid 0.2 valid 0.2 5 0
I Expected Risk | 0.8

Email
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Expected Risk (Supervised Learning)

S’SAL?'\‘;;..‘ 2 Pﬂf (V.v)
VALID 5 0
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valid
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Expected Risk (Supervised Learning) *:

fo\r v) — E iIII”iI{(jr 37)
SPAM, Emall 0 I
VALID 5 0

spam,
valid

R(Ix) = f £(9, y)dF (y1x)
y
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Bayesian Classifier
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» Optimal classifier:

For a given x and a conditional probabilistic model

Pr(y|x)
predict ), that has the smallest expected risk.
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Bayesian Classifier

» Optimal classifier:

For a given x and a conditional probabilistic model

Pr(y|x)
predict ), that has the smallest expected risk.

For symmetric risk €, this corresponds to
picking the option with the highest probability.

0 I
1 0
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Summary

» Probability for modeling

» Statistics for estimation

MLE MAP
» Decision theory for prediction

Bayesian Classifier
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The Tennis Dataset e’
Day Outlook Temp Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Shall we play tennis today?

PlayTennis

Yes
Yes
Yes
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Shall we play tennis today?

Estimate a
o probabilistic model

?2 and predict:

Yes

S Pr(Yes) =9/14=0.64
tes. Pr(No)=5/14=0.36
Yes

Yes 9 Yes

Yes
Yes
Yes
No

PlayTennis
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Wind PlayTennis
Weak No
Strong No
Weak Yes
Weak Yes
Weak Yes
Strong No
Strong Yes
Weak No
Weak Yes
Weak Yes
Strong Yes
Strong Yes
Weak Yes
Strong No

[t’s windy today. Tennis, anyone '3
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[t’s windy today. Tennis, anyone’%«s

;,..I
¢

™

7, ]

Wind PlayTennis

Jreak No Pr(Yes | Weak) = 6/8

rong No

Weak Ye: —_

o v Pr(No | Weak) = 2/8

Wealk Yes

Strong No

Strong Yes

eal i Pr(Yes | Strong) = 3/6
ea es

Weak e Pr(No | Strong) = 3/6

Strong Yes

Strong Yes

Weak Yes

Strong No
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More attributes

Humidity Wind _ PlayTennis  Pr(Yes | High,Weak) = 2/4

High Wealk No . _
High Strong No PI"(NO | ngh,Weak) - 2/4

High Weak Yes

High Weak Yes
Normal Weak Yes
Normal Strong No Pr(YeS | H|gh’Strong) = I /3
Normal Strong Yes

High Weak No : —
et e o Pr(No | High,Strong) = 2/3
Normal Weak Yes
Normal Strong Yes

High Strong Yes
Normal Weak Yes

High Strong No
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The Bayesian Classifier

In general:
I. Estimate from data:
Pr(Class |xq, x5, X3, ...)

2. For a given instance (x4, x5, X3, ...)
predict class whose conditional
probability is greater:

PF(C1 |x1, X2,X3, ) > Pr(Czlxl,XZ,X3, )
=>» predict C4
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Problem

» We need exponential amount of data

Humidity Wind _ PlayTennis  Pr(Yes | High,Weak) = 2/4

High Weak No . _

High Weak Yes

High Weak Yes
Normal Weak Yes
Normal Strong No Pr(YeS | H|gh’Strong) = |/3
Normal Strong Yes

High Weak No I -
Normal Weak Yes Pr(NO | ngh’Strong) 2/3
Normal Weak Yes
Normal Strong Yes

High Strong Yes
Normal Weak Yes

High Strong No
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Naive Bayes Classifier

g
w
E
G
&

To scale beyond 2-3 attributes, use a hack:

Assume that attributes are independent
within each class:

Pr(x,, x,, x5 | Class)
= Pr(x,|Class)Pr(x,|Class)Pr(x,|Class) ...
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Naive Bayes Classifier

1. PI‘(Cl |x)

> Pr(C,|x)

=> predict C,

\

P(A|B) =

P(B|A)P(A

P(B)
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Naive Bayes Classifier

1. PF(C1 |x) > Pr(Cz |x)

=» predict C,

p Pr(C,) Pr(x|Cq) - Pr(C,) Pr(x|C5)
' Pr(x) Pr(x)
=» predict C,
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Naive Bayes Classifier

1. PF(C1 |x) > Pr(Cz |x)

=» predict C,

p Pr(C,) Pr(x|Cq) - Pr(C,) Pr(x|C5)
' Pr(x) Pr(x)
=» predict C,

3 Pr(C,) Pr(x|C;) > Pr(C,) Pr(x|C,)
=>» predict C,
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Naive Bayes Classifier i

1. PI‘(C1 |x) > Pr(Cz |x)

=> predict C,
p Pr(C,) Pr(x|Cq) - Pr(C,) Pr(x|C5)
' Pr(x) Pr(x)
=» predict C,
3. Pr(Cy) Pr(x|C;) > Pr(C,) Pr(x|C,)
=» predict C,

4. Pr(Cy) - Pr(x4|C;) Pr(x,|Cy) ...Pr(x,,|C;) >
Pr(C;) - Pr(x4|C;) Pr(x;[Cy) ... Pr(x;,|C;)
=» predict C,
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Naive Bayes Classifier

> Pr(C,|x)

=> predict C,

Pr(C,) Pr(x|C5)
Pr(x)

=» predict C,

Pr(C,) Pr(x|C;) > Pr(C,) Pr(x|C,)

=> predict C,

1.

Pr(C;|x)

Pr(C,) Pr(x|Cq)

Pr(x)

Pr(Cy)|

Pr(x,

Pr(C,)|

Pr(x;

Cy) Pr(x,

Cy) ...Pr(x,,

C,) Pr(x,]

C,) ... Pr(x,,

Cy)
Cz)

=» predict C,
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Naive Bayes Classifier iy

» Works for both discrete and continuous attributes.

» The goods:
Easy to implement, efficient
Won't overfit, intepretable

Works better than you would expect (e.g. spam filtering)

» The bads
“Naive”, linear
Usually won’t work well for too many classes

Not a good probability estimator
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Naive Bayes Classifier

from sklearn.naive bayes import
BernoulliNB,
MultinomialNB,

GaussianNB
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Quiz
» MLE:

dI'gmMaxmMoedel
» MAP;
dIr'gmaXyjpdel

» Gaussian distribution:
f(x) = const X exp( )
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Quiz

» Bayesian classifier has optimal

» Naive Bayesian classifier assumption:
Pr(C|xq,x5) = Pr(Clx;) Pr(C|x,)
Pr(xy, x,|C) = Pr(x1|C) Pr(x;|C)
Pr(Cy, C;|x) = Pr(Cy|x) Pr(C;|x)
Pr(x|Cy, C;) = Pr(x|C;) Pr(x|C,)
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» All machine learning methods we have
considered so far rely on MLE or MAP

Yes
No
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f ?
Questions?
T USED T© THINK, THEN T TOCK A | | SOUNDS LIKE THE
CORRELATION Ir‘IF'UED STANISTICS CLass. CLP'SS HELPED.
http://xkecd.com/552/
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