

Machine Learning: Unsupervised Learning

Konstantin Tretyakov

http://kt.era.ee

IFI Summer School 2014 STACC

Software Technology and Applications Competence Center

So far...

Optimization

Machine Learning

Fermat's theorem Gradient methods Batch & On-line

MLE, MAP, Bayesian Estimation Risk Optimization

Probability theory

Reasoning by analogy

W

k-NN, Kernel methods

Þ

AATAACGGCCCGATGAGGAAACGAACGGTCGCACT AAGATGAGACATGTCCCGAAAGGTGCATAAGTTAT GGACGAAAAACTTTCTTCGCCCTTTGATGTGCCCC AGCGCGGGATGAGGATCAGCCCCCGCATTAGTTCA ATATGCGAGCTTTCGCGCTCGGAAAGGGCAATAAA GCGACGGCCCCGATGAGGGGTGTTACTAGATTGGA TGGGTGGTTCAGATCTCGGCTTACCCCCTTTATCA ACCCTGCTACAGACTCGTTGAGAATGCTACGGATC

Data Mining

Unsupervised learning patterns

Why would one need clustering?

Quiz

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

D

D

D

D

Complete linkage

D

Single linkage

D

Average linkage

Þ

Ward linkage

D

D

Partitional vs Hierarchical

Partitional clustering finds a fixed number of clusters

Hierarchical clustering creates a series of clusterings contained in each other

Slide © M.Kull, http://courses.cs.ut.ee/2012/ml/

IFI	Summer Schoo	I.
Jun	e 2014	

$$\operatorname{argmin}_{c_1,\ldots,c_K} \sum_{i} \left\| x_i - c_{\operatorname{closest_to}(i)} \right\|^2$$

 $\operatorname{argmin}_{c_1,\ldots,c_K} \sum_{i} \|x_i - c_{\operatorname{closest_to}(i)}\|^2$

• Need to find cluster centers c_k . $c_1 = ?, c_2 = ?, ..., c_K = ?$

K-means

$$\operatorname{argmin}_{c_1,\ldots,c_K} \sum_{i} \|x_i - c_{\operatorname{closest_to}(i)}\|^2$$

- Need to find cluster centers c_k . $c_1 = ?, c_2 = ?, ..., c_K = ?$
- Introduce latent variables (one for each x_i)
 a_i = closest_cluster_center(i)
 a₁ =?, a₂ =?, a₃ =?, ..., a_n =?

 $\operatorname{argmin}_{c_1,\ldots,c_K} \sum_{i} \|x_i - c_{\operatorname{closest_to}(i)}\|^2$

For fixed c_k we can find optimal a_i

• For fixed a_i we can find optimal c_k .

Iterate to convergence.

Fuzzy vs Hard

Each object belongs to each cluster with some weight (the weight can be zero)

Each object belongs to exactly one cluster

Slide © M.Kull, <u>http://courses.cs.ut.ee/2012/ml/</u>

$X \sim [N(\mu_1, \sigma_1^2) \text{ or } N(\mu_2, \sigma_2^2)]$

Given *X*, estimate μ_i, σ_i^2

$\boldsymbol{X} \sim [N(\boldsymbol{\mu}_1, \sigma_1^2) \text{ or } N(\boldsymbol{\mu}_2, \sigma_2^2)]$

Given *X*, estimate μ_i , σ_i^2

$X \sim [N(\mu_1, \sigma_1^2) \text{ or } N(\mu_2, \sigma_2^2)]$

Given *X*, estimate μ_i , σ_i^2

MLE Expectation-Maximization (EM)

SKLearn's Clustering

from sklearn.cluster

import

Ward,

KMeans,

DBScan,

MeanShift, SpectralClustering, AffinityPropagation

SKLearn's Clustering

from sklearn.cluster

Ward,

KMeans,

DBScan,

MeanShift,

Use feature vectors

Use distance matrix

SpectralClustering,

AffinityPropagation

Fuzzy clustering means that _____

uiz

K-means finds a set of cluster centers, which have the smallest

K-means can get stuck in a local minimum (Y/N)?

Unsupervised learning patterns

Canonical basis

D

 $\binom{x_1}{x_2} = \alpha \binom{1}{0} + \beta \binom{0}{1}$

Alternative basis

Alternative basis

Linear Decomposition

Þ

Linear Decomposition

Linear Decomposition

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \dots \\ x_{100000} \end{pmatrix} = \alpha_1 \begin{pmatrix} 0.0 \\ 0.1 \\ 0.1 \\ 0.2 \\ \vdots \\ 0.0 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0.3 \\ 0.2 \\ 0.2 \\ 0.1 \\ \vdots \\ 0.3 \end{pmatrix} + \alpha_m \begin{pmatrix} 0.1 \\ 0.1 \\ 0.1 \\ 0.0 \\ \vdots \\ 0.0 \end{pmatrix}$$

D

D

$\boldsymbol{x} = \alpha_1 \boldsymbol{v_1} + \alpha_2 \boldsymbol{v_2} + \dots + \alpha_m \boldsymbol{v_m}$

$\boldsymbol{x} = \alpha_1 \boldsymbol{v_1} + \alpha_2 \boldsymbol{v_2} + \dots + \alpha_m \boldsymbol{v_m}$

IFI Summer School. June 2014

D

$\boldsymbol{x} = \alpha_1 \boldsymbol{v_1} + \alpha_2 \boldsymbol{v_2} + \dots + \alpha_m \boldsymbol{v_m}$

 $x = V\alpha$

D

$\boldsymbol{x} = \alpha_1 \boldsymbol{v_1} + \alpha_2 \boldsymbol{v_2} + \dots + \alpha_m \boldsymbol{v_m}$

 $x = V\alpha$ $\alpha = ?$

$\boldsymbol{x} = \alpha_1 \boldsymbol{v_1} + \alpha_2 \boldsymbol{v_2} + \dots + \alpha_m \boldsymbol{v_m}$

 $x = V\alpha$ $\alpha = V^+ x$

How do we find a good basis?

D

D

For a point x_i and a unit basis vector v the length of projection of x_i onto v is given by $p = \langle v, x_i \rangle = v^T x_i$

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

D

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

 $\boldsymbol{v} = \operatorname{argmax}_{\boldsymbol{v}} \sigma_{\boldsymbol{v}}^2$

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

Pre-center data, so that $\overline{p} = v^T \overline{x} = 0$

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

Pre-center data, so that $\overline{p} = \boldsymbol{v}^T \overline{\boldsymbol{x}} = 0$

D

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

 $\sigma_{v}^{2} = \frac{1}{n} \sum (p_{i})^{2} = \frac{1}{n} \|\boldsymbol{p}\|^{2}$

D

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

Projection variance

D

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

Projection variance

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

 $\sigma_{\boldsymbol{v}}^2 = \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v}$

Projection variance

D

 $p_i = \boldsymbol{v}^T \boldsymbol{x}_i$

$$\sigma_{\boldsymbol{v}}^2 = \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v}$$

Data covariance matrix $X^T X$

Objective function

Þ

$\operatorname{argmax}_{\boldsymbol{v}} \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v}$

$s.t. \|v\|^2 = 1$

Optimization

D

$\operatorname{argmax}_{\boldsymbol{v}} \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v}$

$s.t. \|v\|^2 = 1$

Method of Lagrange multipliers...

$\Sigma v = \lambda v$

Optimization

$\operatorname{argmax}_{\boldsymbol{v}} \boldsymbol{v}^T \boldsymbol{\Sigma} \boldsymbol{v}$

$s.t. \|v\|^2 = 1$

Method of Lagrange multipliers...

Example

Xc = X - mean(X, axis=0)

Sigma = Xc.T * Xc / n

(= cov(Xc, rowvar=0))

lambdas, vs = eigh(Sigma)

D

D

Principal components are the **eigenvectors** of the **covariance matrix**. $V, \lambda = eig(\Sigma)$

Principal components are the **eigenvectors** of the **covariance matrix**. $V, \lambda = eig(\Sigma)$

For each PC, the corresponding eigenvalue λ_i shows the **amount of variance explained** by the component.

Principal Components Analysis

Eigenvalue spectrum of Σ

Principal Components Analysis

Data projection onto PC *i*: $p = Xv_i$

Data projection onto multiple PCs: $X_{\text{proj}} = XV_*$

Data reconstruction from PC coordinates: $X_{\text{proj}}V_*^T = X$

SKLearn's PCA

from sklearn.decomposition import PCA

model = PCA(n_components=2) model.fit(X) X t = model.transform(X)

model.components_[1,:]

SKLearn's PCA

from sklearn.decomposition import PCA, SparsePCA, ProbabilisticPCA, KernelPCA,

FastICA, NMF,

DictionaryLearning,

PCA: Geometric intuition

$X \sim N(0,1)$

Eigenvalue spectrum shows how much is explained by each _____

• If
$$\Sigma = V \Lambda V^T$$
, then $X_{\text{proj}} = _$