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 Why would one need clustering?
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𝟐

• Need to find cluster centers 𝒄𝒌.
𝒄𝟏 = ? , 𝒄𝟐 = ? ,… , 𝒄𝑲 =?

• Introduce latent variables (one for each 𝒙𝒊)
𝒂𝒊 = 𝐜𝐥𝐨𝐬𝐞𝐬𝐭_𝐜𝐥𝐮𝐬𝐭𝐞𝐫_𝐜𝐞𝐧𝐭𝐞𝐫(𝒊)
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argmin𝒄𝟏,…,𝒄𝑲  

𝒊

𝒙𝒊 − 𝒄𝐜𝐥𝐨𝐬𝐞𝐬𝐭_𝐭𝐨(𝒊)
𝟐

• For fixed 𝒄𝒌 we can find optimal 𝒂𝒊

• For fixed 𝒂𝒊 we can find optimal 𝒄𝒌.

• Iterate to convergence.
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𝑿 ∼ [𝑁 𝝁1, 𝜎1
2 or 𝑁 𝝁2, 𝜎2

2 ]

Given 𝑿, estimate 𝝁𝒊, 𝝈𝒊
𝟐

MLE

Expectation-Maximization (EM)
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Use distance matrix



Quiz

 Fuzzy clustering means that _______

 K-means finds a set of cluster centers, which 

have the smallest ______________

 K-means can get stuck in a local minimum 

(Y/N)?
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Linear Decomposition
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How do we find a good basis?
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Idea: Maximize projection variance

 For a point 𝒙𝑖 and a unit basis vector 𝒗 the 

length of projection of 𝒙𝑖 onto 𝒗 is given by

𝑝 = 𝒗, 𝒙𝑖 = 𝒗
𝑇𝒙𝑖
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Projection variance

𝑝𝑖 = 𝒗
𝑇𝒙𝑖

IFI Summer School.                 

June 2014



Projection variance

𝑝𝑖 = 𝒗
𝑇𝒙𝑖

𝜎𝒗
2 =
1

𝑛
 

𝑖
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2
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𝒗 = argmax𝒗 𝜎𝒗
2
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Data covariance matrix

𝑿𝑻𝑿



Objective function

argmax𝒗 𝒗
𝑇𝚺𝒗

𝑠. 𝑡. 𝒗 2 = 1
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Optimization

argmax𝒗 𝒗
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Method of Lagrange multipliers…

Eigenvector of 𝚺 Eigenvalue



Example

Xc = X – mean(X, axis=0) 

Sigma = Xc.T * Xc / n 

(= cov(Xc, rowvar=0))

lambdas, vs = eigh(Sigma)
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𝜆1 = 0.8

𝜆2 = 28.9

𝜎𝑖
2 = 𝒗𝑖

𝑇𝚺𝒗𝑖 = 𝒗𝑖
𝑇𝜆𝑖𝒗𝑖 = 𝜆𝑖 𝒗𝑖

2 = 𝜆𝑖
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Principal Components Analysis
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Principal components are the 

eigenvectors of the covariance matrix.

𝑽, 𝝀 = 𝐞𝐢𝐠(𝚺)

For each PC, the corresponding eigenvalue 

𝜆𝑖 shows the amount of variance 

explained by the component.
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Eigenvalue spectrum of 𝚺



Principal Components Analysis
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Data projection onto PC 𝑖: 
𝒑 = 𝑿𝒗𝑖

Data reconstruction from PC coordinates:

𝑿proj𝑽∗
𝑇 = 𝑿

Data projection onto multiple PCs: 

𝑿proj = 𝑿𝑽∗



SKLearn’s PCA

from sklearn.decomposition

import PCA

model = PCA(n_components=2)

model.fit(X)

X_t = model.transform(X)

model.components_[1,:]
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SKLearn’s PCA

from sklearn.decomposition

import

PCA, 

SparsePCA,

ProbabilisticPCA,

KernelPCA,

FastICA,

NMF,

DictionaryLearning,

...
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1

𝑿′ = 𝑿
5 0
0 0.9
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1

𝑿′ = 𝑿
5 0
0 0.9

𝑿′′

= 𝑿′
cos 0.8 − sin 0.8
sin 0.8 cos 0.8
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1

𝑿′′ = 𝑿 ⋅ 𝑫 ⋅ 𝑹
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1

𝑿′′ = 𝑿 ⋅ 𝑫 ⋅ 𝑹

𝑿′′ 𝑇 𝑿′′

= 𝑿𝑫𝑹 𝑇(𝑿𝑫𝑹)
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PCA: Geometric intuition

𝑿 ∼ 𝑁 0,1

𝑿′′ = 𝑿 ⋅ 𝑫 ⋅ 𝑹
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= 𝑿𝑫𝑹 𝑇(𝑿𝑫𝑹)
= 𝑹𝑇𝑫𝑇𝑿𝑇𝑿𝑫𝑹
= 𝑹𝑇𝑫2𝑹
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𝚺 = 𝑽𝚲𝑽𝑇
(𝑽 = 𝑹𝑻, 𝚲 = 𝐃2)
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𝚺 = 𝑽𝚲𝑽𝑇
(𝑽 = 𝑹𝑻, 𝚲 = 𝐃2)

𝑿′′𝑹𝑇 = 𝑿𝑫

𝑿′′𝑽 = 𝑿𝐩𝐫𝐨𝐣
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Quiz

 Principal components are ___________ of 

the ___________ matrix.

 Eigenvalue spectrum shows how much 

___________ is explained by each ______.

 If 𝚺 = 𝑽𝚲𝑽𝑇 , then

𝑿𝐩𝐫𝐨𝐣 = _______
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