
Memory-Efficient Fast Shortest Path 
Estimation in Large Social Networks
Volodymyr Floreskul, Konstantin Tretyakov (kt@ut.ee) and Marlon Dumas

Institute of Computer Science, University of Tartu, Estonia. 

Shortest path estimation
Is the President a friend of a friend of yours? Or perhaps
a friend of a friend of a friend? How many social links,
do you think, separate you from the author of this
poster? Have you ever played the Kevin Bacon game?
Do you know the Erdős number of Albert Einstein?
Games aside, computing distances between nodes of
social networks is a rather common problem both for
sociological research as well as for various practical
applications.

Now suppose that we want to quickly find the
approximate distance between “Joe” and “Mary”. For
that we simply check the lengths of all possible
paths through the landmark nodes, i.e.

[Joe→ Landmark1→Mary],
[Joe→ Landmark2→Mary], etc,

and choose the smallest one of them. Recall that all the
distances [Joe → Landmark#] and [Landmark# →
Mary] have been precomputed and stored. We’ll only
need to retrieve and add them up, so the whole
computation will take around a couple of hundred
operations — orders of magnitude less than a billion.

Acknowledgments
The authors acknowledge the feedback from Ando Saabas from Skype/Microsoft Labs. This research is
funded by ERDF via the Estonian Competence Center Programme and Microsoft/Skype Labs.

The problem of finding distances in graphs is well-
studied. Unfortunately, all exact algorithms for solving it
are a bit too slow to be useful in certain. Indeed, the
naive shortest path search algorithm will have to
traverse nearly the whole graph in order to answer even
a single distance query. For a modern billion-user social
network, this means performing billions of operations
— way too much to spend on a single search request.

Complete shortest path trees for 3 landmarks in a graph

Pruned shortest path trees for the same landmarks

Given a set of pruned landmark trees, the distance
between any nodes s and t can be estimated by
considering all possible combinations of the form

dist 𝑠, 𝑢 + dist 𝑢, 𝑣 + dist(𝑣, 𝑡)
where u and v are two landmark nodes that cover s and
t respectively in their trees. Note that in order to quickly
evaluate dist 𝑢, 𝑣 , the distances between all pairs of
landmarks need to be precomputed in advance
together with the landmark trees.

We compared the results to the baseline approach (with
full landmark trees) and discovered the following:
• The approximation quality with pruned landmark

trees is similar to the baseline approach.
• The query execution time is also similar.
• The amount of memory required to store the

landmark data structures is, however, reduced up to
10 times.

Approximation error with pruned landmarks on the Skype
graph. The dashed line denotes the baseline (no pruning). The
upper panels correspond to the case when landmarks are
selected randomly. The lower panels correspond to the case
when nodes with the highest degree are used as landmarks.

Landmark-based methods
Computation time may be significantly reduced if we
resort to certain approximate algorithms. A popular
family of such algorithms are landmark-based methods.
The idea is simple: pick several (say, 100) random
“landmark nodes” in the graph, then precompute and
store shortest path distances from each landmark node
to all other nodes.

Shortest path trees
There are many variations of the landmark-based
methods. Importantly, computing a complete shortest
path tree (rather than just the distances) makes it
possible to find much better distance approximations by
locating lowest common ancestors of the query nodes or
combining paths from several landmarks.

Pruned landmark trees
The problem with the landmark-based approach is that
it may require quite a lot of memory to store the
precomputed distances or shortest path trees. For a
graph with a billion nodes, storing a shortest path tree
(or a set of distances) for a single landmark requires no
less than a gigabyte of disk space or RAM. With
hundreds of landmarks the space consumption
increases proportionally to hundreds of gigabytes.
To overcome this problem we propose to limit the set of
nodes, spanned (“covered”) by each landmark so that
every node is present in exactly k shortest path trees
(where k is considerably smaller than the number of
landmarks). As a result, we need to store much smaller
trees for each landmark. It turns out such pruned
landmark trees can be computed efficiently using a
rather straightforward algorithm.

Results
We evaluated the use of pruned landmarks trees within
three different landmark-based estimation techniques
using 100, 1000 and 10000 landmarks on four social
networks, spanning several magnitudes in terms of size. Query execution time on the Skype graph. Dashed line denotes

the baseline (no pruning).

Memory, consumed by the indexing data structures with and
without pruning.


