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Introduction

In the world, so vast and cheerful,

Every single living creature

Is of little cells consistent

Little cells with many features.

If we study cells in detail,

Understand their complex functions,

We could �nd a cure for sickness

Be it cancer or infections.

Little cells are very complex,

They have membranes, hormones, enzymes,

All the processes inside them.

Can be complicated sometimes

In this work we look in detail

At transcription regulation.

This is quite a simple process

That we model as equation.

The cell of a living organism is perhaps one of the most studied and at the
same time the least understood objects on our planet. Processes that take place
in this tiny piece of matter are strikingly complex, yet, concurring in harmony
together, they coordinate the life cycle of the whole organism. Understanding
these processes is therefore one of the ultimate goals of contemporary medical
and biological studies that may lead to better treatment of diseases and novel
biotechnological discoveries.

Current biological knowledge suggests that most of the functions in the cell
are performed by certain molecules known as proteins. Despite the diversity of
di�erent proteins (hormones, enzymes, transport proteins, etc), their structure is
generally the same on the molecular level. Each protein can be constructed as a
linear chain of amino acids. These linear chains are encoded by the DNA molecules

that are stored in the chromosomes of the cell.
One of the most fascinating things in cell biology is the fact that, although a

multitude of various cell types exists in an organism, all of them have the same
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DNA. The actual properties of each cell are therefore not de�ned by what proteins
are encoded on its DNA, but rather by what proteins are being produced there.
This, in turn, is determined by what regions of the DNA are active. And that is,
in turn, in�uenced by what proteins are present in the cell. Thus, the life of a cell
is governed by intricate relations and complex feedback loops. Studying the DNA
and the relationships among the proteins may help to unwind these relations and
therefore provide the keys to the inner workings of the cell.

In this thesis we address the problem of determining putative relations be-
tween DNA-binding proteins (transcription factors) and short sites on the DNA,
where these proteins might bind themselves (motifs). Although current methods
of molecular biology allow searching for binding sites of a given transcription factor
experimentally, these experiments are generally rather expensive and would ben-
e�t from any hints given by computational evidence. Our method provides these
hints, exploiting for this purpose the freely available microarray and sequence

data.
Our approach is based on a simple linear model that naturally combines mi-

croarray measurements with DNA sequence data. The coe�cients of this model,
once estimated from data, can be used to infer putative relations between tran-
scription factors and binding sites.

• We present the detailed speci�cation and the biological motivation for the
model in chapter 3.

• In chapter 4 we propose a number of methods for the estimation of model
parameters.

• We have tested the performance of the model on a real biological dataset and
on a specially crafted arti�cial dataset. The obtained results indicate that
the model can be used to discover biologically relevant information and that
the proposed parameter estimation methods are reliable. The experiments
are documented in chapter 5.

• We illustrate various applications of the model for practical analysis of dif-
ferent kinds of data in chapter 6.

• For a broader distribution of the method we have created a proof-of-concept
implementation of the estimation methods in Scilab and also a Web-tool that
allows the users to acquaint themselves with out results as well as analyze
their own datasets. The web-tool is brie�y presented in Appendix A. The
developed code is attached on a separate compact disc and is also available
from the supplementary website [GMA].

• Before diving into the details, in chapters 1 and 2 we give a brief overview of
the biological and mathematical basics that are needed to understand this
work.
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Chapter 1

Biological Background

People are DNA's way of making more DNA.

Edward O. Wilson

1.1 The DNA

The cell is the fundamental unit of any living organism. The smallest organ-
isms, such as bacteria, might consist of a single cell, larger beings may contain
millions of di�erent cells organized in organs and tissues. Despite the small size, a
cell is a very complex system on its own and is composed of yet smaller functional
units called organelles. The functions of the organelles, as well as many other
processes in the cell are mostly performed by protein molecules. Proteins vary
greatly in their shapes, sizes and properties, yet they are all constructed in the
same way: as linear chains of amino acids. The exact order of amino acids in the
chain usually uniquely speci�es any protein. This order is encoded in the strands
of the DNA molecules, which form the genetic material of the cell.

The DNA (deoxyribonucleic acid) is a long spiral-shaped molecule consisting of
two complementary strands of nucleotides. Each nucleotide consists of a phosphate
group, sugar deoxyribose and a nitrogenous base: adenine, thymine, cytosine or
guanine. Depending on the base, nucleotides are usually denoted by letters A, T,
C and G respectively. A DNA strand can be therefore encoded as a string of these
four letters. The second strand of the same molecule is uniquely de�ned by the
�rst one: where the �rst strand has A, the second will have T, where the �rst one
has C, the second will have G and vice-versa.

The meaning of the DNA sequence is not yet completely clear, but something
is already known. Firstly, some parts of the DNA, known as the coding regions

or genes, are used to encode proteins. The order of nucleotides in these regions
determines precisely the order of the amino acids in the proteins of the cell. It
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Figure 1.1: DNA consists of a spiral chain of nucleotides. In the gene-coding
regions of the DNA, each triplet of nucleotides can be decoded into an amino acid.
A chain of amino acids forms a protein.

is known that each amino acid is encoded by a certain triplet of nucleotides, and
there are certain nucleotide triples that usually denote the start and the end of
the coding region, e.g., ATG and TAG.

Besides the coding regions there are the regulatory regions on the DNA devoted
to control mechanisms. These regions contain short sequences, often referred to
as motifs, that can be bound by certain proteins (transcription factors). The act
of binding most often has a regulatory role: it can open up a nearby coding region
for processing thus activating a certain gene or, contrarily, close it down.

The DNA is believed to store the hereditary information of the whole organism.
One of the most fascinating facts about cellular biology is that each cell in the
organism has exactly the same DNA. Despite that, there is a multitude of radically
di�erent cell types: blood cells, skin cells and neurons in the brain seem as di�erent
as it can get. Therefore, the main functions of a cell are not determined simply
by the genes on its DNA, but rather by what genes are being active in that cell.
This explains why the questions of gene expression regulation comprise one of the
major research directions in contemporary molecular biology.

In order to better understand the issue, we need to get acquainted with the
process of protein production in the cell �rst.

1.2 Gene Expression Mechanisms

Proteins encoded on the DNA are produced in two stages: transcription and
translation. In the process of transcription a large molecular complex called RNA-
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polymerase attaches itself to the segment of DNA containing a certain promoter

sequence and starts copying DNA from that point producing an equivalent RNA
molecule. RNA (ribonucleic acid) is very similar to DNA: it also consists of a
chain of nucleotides. However, it is single-stranded, uses the sugar ribose in place
of DNA's deoxyribose, and base uracil instead of thymine. Contrary to the DNA,
the RNA molecules are much less stable and get decomposed (hydrolyzed) in the
cell within minutes. This makes it possible to use them as temporary information
carriers between the DNA �data storage� in the nucleus and the main protein-
producing machinery outside.

The transcription process stops when the RNA-polymerase encounters a certain
terminator sequence (also called stop codon). It then releases an RNA encoding
exactly the same information as that on the corresponding coding region of the
DNA. Next, the obtained RNA undergoes splicing � a process, during which parts
of the RNA chain are removed with the help of some complex molecular machinery.
Finally, an RNA strand ready to be translated to proteins is produced. This RNA
is known as mRNA (short for messenger-RNA).

Another large molecular complex, ribosome, attaches itself to the mRNA and
starts reading it, producing the corresponding protein. This process is known as
translation.

Altogether, the production of proteins from genes is referred to as gene expres-
sion. As already mentioned before, not all genes of the genome are expressed in a
cell at once. The regulation of which gene will be expressed and which will not is
a complex process, not yet completely understood by contemporary biology. By
what is known, an important role in expression regulation is played by certain
proteins, called transcription factors or TF s. These proteins attach themselves to
motifs on the DNA and provoke (or prevent) RNA-polymerase to bind the DNA at
these points. This can induce (or suppress) the transcription of the corresponding
gene. Sometimes, the transcription regulation patterns can be more complex: cer-
tain TFs will attach to the DNA only in presence of some other TFs, and certain
TFs, when attached, may block other TFs from binding there.

Transcription regulation is not the only part of expression regulation. After
being transcribed to mRNA, the gene will be translated to proteins only under
certain circumstances, when all the machinery (i.e., proteins) needed for splicing
and translation is available and, depending on the outcome of splicing, the mRNA
of the gene may be translated to one or another protein.

In general, the production of any given protein by the cell depends on the
amount of other proteins as well as on environmental conditions, such as temper-
ature, humidity, acidity, etc. The relationships among proteins that govern gene
expression are often called genetic networks, and the problem of determining them
is crucial to explaining the life cycle of the cell.
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Figure 1.2: The �gure depicts strands of DNA in the nucleus of the cell (on the
top left), genes (red regions in the middle window), and the nearby regulatory
regions together with transcription factors (yellow blobs) bound to motifs.

1.3 Microarray Data

The microarray technology provides e�cient methods for measuring expression
of many genes at once. A typical microarray experiment goes as follows. First,
an array is prepared, which consists of a glass or membrane support with a set
of short DNA fragments attached to it. The fragments are carefully arranged in
spots : each spot contains the fragments of a certain gene only. Next, two cell
cultures are selected: a �reference� culture, and a culture of cells under certain
stress or environmental conditions (�test� culture). All the mRNA from these
cells is reverse-transcribed to create strands of complementary DNA (cDNA). The
strands are then labeled with �uorescent or radioactive dyes. Labeling of the
cDNA strands di�ers for the two cultures: the reference culture is commonly
labeled with a green dye, and the test culture � with a red one. The obtained
cDNA is then purged onto the array where it reacts (hybridizes) with the DNA in
the spots of the array. As a result, all the cDNAs should end up on the spots with
matching DNA fragments. Due to the labeling of the cDNA, the color (or radiation
spectrum) of each spot will indicate the ratio of the cDNA amounts from the �rst
and the second culture attached to it, hence the ratio of mRNA amounts of the
corresponding gene produced in the di�erent cultures. The amount of mRNA for
a gene may be regarded as an indicator of the expression of that gene.

Of course, as noted above, transcription is not the only aspect of gene expres-
sion, so this is a rather rough indicator indeed.

After the hybridization has been performed, the glass arrays are scanned, the
color of the spots recognized and converted to a single real number for each gene
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� its expression value. Data from several arrays is usually represented as a matrix
with rows corresponding to genes and columns to arrays. Each entry speci�es
the expression of a gene in a given array. Although microarray experiments can
be rather costly, every experiment measures the expression levels of thousands of
genes at the same time. Therefore, it is typical for the resulting matrix to have
thousands of rows, but only about a hundred or so columns. It is this expression
matrix, that is in the focus of this thesis.

The most common way of exploiting microarray data currently is to look for
genes that have similar expression pro�les, i.e., tend to have similar expression
values over many experiments. This expression similarity can often be attributed
to functional relation of the genes. In this thesis we go a step further and incorpo-
rate genomic sequence in the analysis. We consider expression similarity of genes
having similar motifs in their promoter regions.

1.4 DNA Sequence Data

Due to the e�cience of contemporary DNA sequencing technologies, the genomes
of many di�erent organisms have been sequenced in their entirety and are freely
available for processing. In the practical part of this thesis we focus on the genome
of baker's yeast, Saccharomyces cerevisiae, which is distributed on the Saccha-

romyces Genome Database website [SGD]. This genome is well studied and most
of putative coding regions in it are detected and annotated. For each gene-coding
region, the sequence of 600-1000 nucleotides immediately preceding it (the so-
called primary promoter) is known to comprise the major regulatory region for
that gene. Note that things are often not as simple in more complex organisms.

We are mostly interested in the presence of known motifs in the promoters.
Several databases of known motifs are available, the most famous of them are JAS-
PAR [BVT+08] and TRANSFAC [WDKK96]. In this work we use the TRANS-
FAC database version 10.3 [WDKK96, MFG+03]. The motifs in TRANSFAC are
typically represented in the form of Position Weight Matrices (PWMs). For a
reader not aquainted with this term it should be enough to know that one can
search for �occurrences� (or �matches�) of a PWM in a given sequence in approx-
imately the same manner as one would search for the occurrences of a substring.
PWM is di�erent in that it allows to have mismatching characters in a certain
way. In our experiments we use the storm tool [SSZ07] to determine, for each
given gene and each motif, whether the gene has a match of that motif in its
promoter or not.
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1.5 Gene Ontology Annotation Data

The analysis method presented in this thesis can be easily generalized to other
kinds of data besides microarray measurements and DNA sequences. In particular,
we attempt to make use of the Gene Ontology annotations. Gene Ontology (GO)

[ABB+00] is a controlled vocabulary of terms, describing function, localization
and processes that any gene might take part of. The vocabulary allows to manage
existing information about the genes in a simple and concise form of annotations.
An annotation speci�es for a gene that it is known to be associated with a certain
function or process. The Saccharomyces Genome Database website has collected
known annotations for yeast genes. We show the use of these annotations in our
experiments with quite fruitful results.
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Chapter 2

Mathematical Background

The Great Book of Nature is written in the language of

mathematics.

Galileo Galilei

This chapter introduces the general mathematical and statistical notions used
further in the text. Only the most basic ideas are presented, avoiding detailed
explanations, examples and proofs. For a more thorough introduction on the
topic the reader is referred to textbooks on the subject, such as [Mey01, GS97,
HS03, MS06]. Readers familiar with the topic can safely skip this chapter and
refer back to it only when necessary.

2.1 Matrix Algebra

Most of the math that follows is expressed in terms of real-valued vectors and
matrices. The notation that we use is presented in Table 2.1.

Recollect that an n-element vector v is just an array of n real numbers, and
that an n×m matrix M is a table of real numbers with n rows and m columns.
An n-element vector v can also be regarded as a n× 1 matrix.

Matrix operations. Two equally-sized matrices A and B can be added together
to obtain their sum C = A + B in the following manner:

(C)ij = (A)ij + (B)ij .

If A is an n × m matrix and B is an m × ` matrix, these matrices can be
multiplied together. The resulting n× ` matrix C = AB is de�ned as follows:

(C)ij =
m∑
k=1

(A)ik(B)kj (2.1)

13



Notion Notation

Vectors Boldface lowercase letters: a,b, c, . . .
Vector elements Subscripts: (a)i or ai
Matrices Boldface capital letters: A,B,C, . . .
Matrix elements Subscripts: (M)ij or (M)i,j or Mij or Mi,j

Matrix rows Superscripts: M(i∗)

Matrix columns Superscripts: M(∗j)

Matrix transpose MT

Matrix inverse M−1

Moore-Penrose pseudoinverse M+

`2 norm ‖M‖
Matrix rank rank(M)
Identity matrix I

Table 2.1: Matrix notation.

The transpose of an n×m matrix M is an m× n matrix that is obtained by
switching its rows for columns and vice-versa:

(MT )ij = (M)ji .

For any two matrices A and B that can be multiplied together it holds that

(AB)T = BTAT .

Matrix rank. Let v1,v2, . . . ,vn be m-dimensional vectors. These vectors are
said to be linearly independent, if, for any λ1, λ2, . . . , λn ∈ R:

n∑
i=1

λivi = 0⇔ λ1 = λ2 = · · · = λn = 0 .

The rank of a matrix rank(M) is de�ned as the maximum number of linearly
independent columns of M. In simple terms, rank measures the �complexity� of a
matrix. In the main part of the text we shall use the following facts about rank:

rank(M) = rank(MTM) = rank(MMT ), for any matrix M, (2.2)

rank(MMT + λI) = n, for any n×m matrix M and any λ > 0. (2.3)
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Matrix inverse. The n × n identity matrix I is de�ned as a matrix with ones
on the diagonal and zeros elsewhere, that is:

(I)ij =

{
1, if i = j,

0, otherwise.

For a given n× n matrix M, its inverse M−1 is de�ned as a matrix, satisfying

MM−1 = M−1M = I .

Not every square matrix has an inverse. A matrix that has an inverse is called
invertible. For any two invertible matrices A and B it holds that

(AB)−1 = B−1A−1 .

The rank of an n× n invertible matrix is n and vice versa:

rank(M) = n⇔M is invertible. (2.4)

Matrix `2-norm. We de�ne the `2-norm of a matrix M as the square root of
the sum of squares of its elements:

‖M‖ =

√∑
i,j

M2
ij .

Orthogonal matrices. A square matrix M is said to be orthogonal if M−1 =

MT . In other words, the matrix M is orthogonal i�

MTM = MMT = I .

Multiplication of a matrix by an orthogonal matrix does not change the `2-norm
of that matrix. That is, if U is orthogonal:

‖M‖ = ‖UM‖ = ‖MU‖ , (2.5)

for any M of proper dimensions.

Singular value decomposition. For any n×m matrix M there exist matrices
U, D, V, such that

M = UDVT , (2.6)

where U is a n × n orthogonal matrix, V is a m ×m orthogonal matrix, and D

is an n ×m matrix with nonnegative numbers on the diagonal and zeros o� the
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diagonal. That is, Dij = 0 for i 6= j and Dii ≥ 0. The elements di = Dii are
called the singular values of M. The number of nonzero singular values is equal
to the rank of the matrix. The decomposition (2.6) is called the singular value

decomposition (SVD decomposition) of M.

Moore-Penrose pseudoinverse. Let M = UDVT be the singular value de-
composition of M. The Moore-Penrose pseudoinverse of M is a matrix M+ that
is de�ned as follows:

M+ = VD+UT , (2.7)

where

(D+)ij =

{
1/Dii, if i = j and Dii > 0,

0, otherwise.
(2.8)

Any matrix has a uniquely de�ned Moore-Penrose pseudoinverse and if a matrix
is invertible, M+ = M−1.

The Moore-Penrose pseudoinverse can also be de�ned as a matrix satisfying
the following conditions:

MM+M = M, (2.9)

M+MM+ = M+, (2.10)

M+M = (M+M)T , (2.11)

MM+ = (MM+)T . (2.12)

In addition, in the main text we refer to the following particular properties of the
pseudoinverse, that can be easily derived from the conditions above:

MTMM+ = MT (2.13)

M+MMT = MT (2.14)

M+(M+)TMT = M+ (2.15)

MT (M+)TM+ = M+ (2.16)

2.2 Probability Theory

A work on data analysis cannot do without basic probability theory. Table 2.2
presents the notation used in this work.

Random variables. The notion of a random variable is central to probability
theory. Avoiding formalities, we can regard a real-valued random variable X as a
real-valued variable, the exact value of which is uncertain. A typical example of a
random variable is the number of points on a die yet to be thrown.
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Notion Notation

Random variables Serif capital letters: A,B,C, . . .
Probability For example: Pr[X > 0]

Mean X or E(X)
Variance D(X)
Covariance cov(X,Y)

Almost sure convergence Xn
a.s.→ Y

Sample x← X
Normal distribution N(m,σ2)
Bernoulli distribution B(p)
Beta distribution Beta(a, b)

Table 2.2: Probability theory notation.

The uncertainty of a random variable is not absolute, though. For any potential
value x, we have an idea of how probable it is that X > x, X = 0 or X < x. We
can also answer more complex questions, such as �what is the probability that
3 < X < 5?�. This knowledge about X is most conveniently formalized using a
cumulative distribution function (CDF):

FX(x) = Pr[X ≤ x] .

To indicate that a variable X has cumulative distribution FX we write X ∼ FX

and often say simply that �X has distribution FX�. A distribution function can be
de�ned similarly for two or more variables:

FX,Y(x, y) = Pr[X ≤ x and Y ≤ y] .

In this case we write (X,Y) ∼ FX,Y. A number of standard distribution functions
exist, such as the Bernoulli distribution, normal distribution, beta distribution,
etc. Each of these distributions describes the uncertainty of a random variable in
its own speci�c manner.

Random variables can be added, multiplied and divided just as usual real
numbers, the only di�erence is that the result is also a random variable. For
example, if X denotes the number of points on one die and Y � the points on a
second die, then X + Y would be the total number of points on the two dice and
2X would be twice the number of points on the �rst die.

Mean, variance, covariance. To avoid excessive formalities, we only give an
informal de�nition here. The mean of a random variable X is the value that we
expect this variable to have �on average�. Let X denote the number of points on
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a die. The mean of this random variable is 3.5, because this is the average of the
equally probable outcomes of a single throw: 1, 2, 3, 4, 5 or 6. We denote the mean
of X as E(X) or X.

A useful property of mean is linearity. For any a ∈ R and random variables X

and Y:
E(aX + Y) = aE(X) + E(Y) .

The variance of a random variable is de�ned as the mean squared deviation of
this variable from its mean:

D(X) = E((X− X)2) .

The covariance of two variables X and Y is de�ned as

cov(X,Y) = E((X− X)(Y − Y)) .

Variance and covariance satisfy the following properties:

D(X) = E(X2)− E(X)2 , (2.17)

D(X) = cov(X,X) , (2.18)

cov(X,Y) = E(XY)− E(X) E(Y) , (2.19)

cov(X,Y) = cov(Y,X), (2.20)

cov(aX + Y,Z) = a cov(X,Z) + cov(Y,Z). (2.21)

Random variables X and Y are said to be uncorrelated, if cov(X,Y) = 0. If X and
Y are uncorrelated, then

E(XY) = E(X) E(Y) .

Independence. We say that random variables X and Y are independent, if:

FX,Y(x, y) = FX(x)FY(y) .

Informally, independence means that observing the value of one of the variables
does not provide any knowledge about the other one. For example, two separate
die throws are independent, because knowing the outcome of the �rst throw does
not tell anything about the outcome of the second. However, the sum of two
throws is not independent of the �rst throw: if we know that the �rst throw
produced a small number we would expect the sum to be smaller than usual, too.
Independent random variables are necessarily uncorrelated.

Sample. Let X be a random variable with distribution FX. If we get to observe
its value x, we say that we obtain a realization of this random variable and write
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it as:
x← X or x← FX .

Let X1,X2, . . . ,Xn be independent random variables, each with distribution FX.
Realizations (x1, x2, . . . , xn) of these random variables form an i.i.d. (independent,
identically distributed) sample of FX.

Almost sure convergence. Let a ∈ R and let (Xn)n∈N be a sequence of random
variables. We say that this sequence converges almost surely to a and we write
Xn

a.s.→ a, if

Pr
[

lim
n→∞

Xn = a
]

= 1 .

In other words, nearly any realization of the sequence Xn converges to a.

Strong law of large numbers. Let (Xn)n∈N, be a sequence of independent,
identically distributed random variables with distribution FX. Let the mean of
this distribution be m. The strong law of large numbers states that

1

n

n∑
i=1

Xi
a.s.→ m.

That means, if (x1, x2, . . . , xn) ← FX is an i.i.d. sample of FX, the sample mean
will converge to E(X) with probability 1.

Empirical cumulative distribution function. Let (x1, x2, . . . , xn) be an i.i.d.
sample of distribution FX. We can use this sample to construct an approximation
to the distribution function FX. Namely, let

F emp
n (x) =

#{i : xi ≤ x}
n

,

where #{·} denotes the number of elements in a set. The function F emp
n is called

the empirical cumulative distribution function (CDF) of a given sample. By the
law of large numbers, as the sample size increases this function converges to the
true distribution function FX:

F emp
n (x)

a.s.→ FX(x), for any x.

2.3 Optimization Theory

Optimization theory deals with the task of �nding the minima and maxima of
functions. In this work, we only use the most basic notion of a partial derivative.
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We denote the partial derivative of a function f with respect to a variable x as:

∂f(x)

∂x
or

∂

∂x
f(x) or

∂f

∂x
(x) ,

If the parameter of f is a vector v or a matrix M, we use the notation such as:

∂f(v)

∂v
or

∂f(M)

∂M
,

to denote the vector or matrix of corresponding partial derivatives:(
∂f(v)

∂v

)
i

=
∂f(v)

∂vi
,

(
∂f(M)

∂M

)
ij

=
∂f(M)

∂Mij

.

Di�erentiability. Let f : Rn → R be a multivariate function. We say that f is
di�erentiable at point x∗, if there exists a vector a(x∗), such that

f(x∗ + ∆x) = f(x∗) + a(x∗)T∆x + o(∆x) .

We say that function f is di�erentiable if it is di�erentiable for any x∗ ∈ R. The
vector a(x∗) is referred to as the gradient of f (at point x∗), and we denote it by
∂f(x∗)
∂x

. The elements of this vector are the (univariate) partial derivatives of f ,
which, we hope, are familiar to the reader from basic calculus.(

∂f(x∗)

∂x

)
i

=
∂f(x∗)

∂xi
=
∂f(x∗1, x

∗
2, . . . , x

∗
n)

∂xi
.

The following well-known properties of gradient and partial derivatives are used
in this work:

∂a

∂x
= 0, if a is a constant, (2.22)

∂ax

∂x
= a, (2.23)

∂x2

∂x
= 2x, (2.24)

∂af(x) + g(x)

∂x
= a

∂f(x)

∂x
+
∂g(x)

∂x
, (2.25)

∂f(g(x))

∂x
=
∂f

∂x
(g(x)) · ∂g(x)

∂x
. (2.26)

Convexity. The function f : Rn → R is called convex (or, sometimes, convex-
cup), if for any x,y ∈ R and λ ∈ (0, 1):

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) .
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In this work, we use the fact that the function

f(x) = ‖Ax + b‖2 (2.27)

is convex and di�erentiable for any m× n matrix A and m-element vector b.

Minimum of a convex function. Let f : Rn → R be a multivariate function.
We say that the point x∗ is a global minimum of that function, and write

x∗ = argmin
x

f(x) ,

when
f(x∗) ≤ f(x) for any x ∈ Rn .

If the function f is convex and di�erentiable, then a point x∗ is a global minimum
of f if and only if

∂f(x∗)

∂x∗
= 0 . (2.28)

2.4 Linear Models

The theory of linear models is, perhaps, one of the most widely treated branches
of statistics. Here we present only the basic linear model in its simplest form. Let
X1,X2, . . . ,Xm and Y be random variables. We say that these variables form a
linear model, if they satisfy the relation

Y = β1X1 + β2X2 + · · ·+ βmXm + ε , (2.29)

where β1, β2, . . . , βm ∈ R are the model coe�cients and ε is a random variable
representing noise. The variable ε is de�ned to be independent of all Xk and has
normal distribution with zero mean and variance σ2:

ε ∼ N(0, σ2).

We shall be interested in the task of estimating the values of the parameters βk
from the observed values of the variables Y and Xk. Let i ∈ {1, 2, . . . , n} and for
each i let (xi1, xi2, . . . , xim, yi, εi) be an independent realization of (X1,X2, . . . ,Xm,

Y, ε). As the realizations come from a linear model, they must also satisfy equation
(2.29):

yi =
m∑
k=1

βkxik + εi, for all i ∈ {1, 2, . . . , n}. (2.30)

Collect all the values (xij) into an n×m matrix X. This matrix is often referred
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to as the data matrix. Collect all the values (yi) into an n-element vector y and
all the values (εi) into an n-element vector ε. Finally, let β be the vector of
parameters (βk). Then equation (2.30) can be conveniently expressed in matrix
form:

y = Xβ + ε . (2.31)

In practice, we only observe the matrices y and X and we are interested in esti-
mating the parameters β. There are typically two di�erent reasons why this task
may be important.

Predictive modeling. It is customary to regard equation (2.29) as a predictive
model. In this case the variables Xk are referred to as the predictor variables

and Y as the output variable. If we know the model parameters β, then for any
instantiation x = (x1, x2, . . . , xm)T of the predictor variables we can predict the
output ŷ as:

ŷ =
m∑
k=1

βkxk = βTx .

Such a prediction ŷ will have an error ε, but we typically expect this error to be
tolerably small. In a practical setting, we do not know the model parameters, but
we have a dataset (X,y) of �past observations�. We can use this dataset to obtain
an estimate for the parameters β̂ and use them to predict the output ŷ for any
forthcoming �future observations� x.

Descriptive analysis. Sometimes, we do not really need a model for making
predictions, but the values of the parameters β themselves have a meaningful
interpretation. The conceptual di�erence from predictive modeling lies in the fact
that we do not expect any future observations. We just search for the parameters
β, that model the linear relation between X and y and thus explain or describe
the data. This is the way in which we apply linear modeling in this work.

2.4.1 Model Parameter Estimation

Least squares. Perhaps the simplest and the most natural method of parameter
estimation for a linear model is the least squares method. The idea is to �nd β̂ so
that the mean squared error of the corresponding model predictions ŷi would be
as small as possible. In formal terms:

β̂ = argmin
β

1

n

n∑
i=1

(yi − ŷi)2 , (2.32)
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where

ŷi =
m∑
k=1

βkxik

is the model prediction for instance i. Equation (2.32) can be rewritten in matrix
form as:

β̂ = argmin
β

1

n
‖y −Xβ‖2. (2.33)

We can also drop the constant 1
n
, as it does not in�uence the minimum. As we

know, the function ‖y−Xβ‖2 is convex and di�erentiable. Therefore, we can use
the condition (2.28) to �nd its minimum:

∂

∂β
‖y −Xβ‖2 = 0 . (2.34)

The latter can be simpli�ed using (2.25), (2.26) and (2.24):

∂

∂β
‖y −Xβ‖2 =

∂

∂β

n∑
i=1

(yi − (Xβ)i)
2 =

n∑
i=1

∂

∂β
(yi − (Xβ)i)

2

=
n∑
i=1

2(yi − (Xβ)i)
∂(yi − (Xβ)i)

∂β
(2.35)

The partial derivatives can be computed as follows:

∂(yi − (Xβ)i)

∂βκ
=
∂yi
∂βκ
− ∂(Xβ)i

∂βκ
= −∂(Xβ)i

∂βκ
= −∂

∑m
k=1 xikβk
∂βκ

= −
m∑
k=1

∂xikβk
∂βκ

= −
m∑
k=1

xik
∂βk
∂βκ

= −xiκ .

By substituting this into (2.35), we get:

∂

∂βκ
‖y −Xb‖2 =

n∑
i=1

2(yi − (Xβ)i)(−xiκ) = −2
n∑
i=1

(y −Xβ)i(X)iκ

= −2(XT (y −Xβ))κ .

Therefore, equation (2.34) takes the matrix form:

−2(XT (y −Xβ)) = 0 ,

which can be simpli�ed to
XTXβ = XTy .
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If XTX is invertible, the solution to that equation is

β̂ = (XTX)−1XTy .

Otherwise, multiple solutions exist. All of them can be expressed as

β̂ = X+y + (X+X− I)k ,

where k is anym-element vector and X+ denotes the Moore-Penrose pseudoinverse
of X.

Ridge regression. Although the least squares solution provides the best �t to
the data, it is sometimes better to �nd a solution that not only �ts the data well,
but also has reasonably small parameter values. It can be achieved by penalizing
large β in the following manner:

β̂ = argmin
β
‖y −Xβ‖2 + λ‖β‖2 ,

where λ > 0 is the so-called regularization parameter. The solution to this problem
is:

β̂ = (XTX + λI)−1XTy .

This method is commonly referred to as `2-norm regularized regression or ridge
regression.

2.4.2 Model Assessment

Various metrics exist for the evaluation of the quality of an estimated model.
In this work we use three particular metrics: mean squared error, coe�cient of

determination and ROC AUC score.

Mean squared error. The mean squared error of the model is simply the mean
of the squares of prediction errors:

MSE =
1

n

n∑
i=1

(yi − ŷi)2, where ŷi =
m∑
k=1

β̂kxik .

Coe�cient of determination. Let S2 be the variance of the output, that is

S2 =
1

n

n∑
i=1

(yi − y)2 where y =
1

n

n∑
i=1

yi .
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The coe�cient of determination of a model, often denoted as R2, is de�ned as
follows:

R2 = 1− MSE

S2
.

The coe�cient of determination rescales the mean squared error by the variance
of the data and thus measures the fraction of variance that is explained by the
model. The value of R2 = 1 means that the model is a perfect predictor, its error
is 0. The value of R2 = 0 means the model is no better at prediction than a
constant predictor ŷ = y.

ROC AUC score. The Receiver Operating Characteristic Area Under Curve

(ROC AUC) statistic is rather unrelated to linear models in general, but we
use it in the main text to evaluate the ranking of the model parameters. Let
{a1, a2, . . . , an} be a set of some objects and let there be a binary variable yi as-
sociated with each object ai. Those objects, for which the corresponding yi = 1

are called positives, and those, for which yi = 0 are called negatives. Suppose,
some system assigns a rank ri to every object ai, aiming to assign higher ranks
to positive instances and lower ranks to negative instances. The ROC AUC score
is a measure of goodness for such a system. We de�ne ROC AUC score as the
probability that the rank of a randomly chosen positive instance is higher than
the rank of a randomly chosen negative one:

ROC = Pr[ri > rj | yi = 1, yj = 0] .

The value of ROC AUC equal to 1 indicates a perfect ranking, where all positive
instances get the highest ranks. The value of ROC AUC equal to 0.5 indicates the
worst possible ranking that is not better than random guessing. Finally, the value
of ROC AUC equal to 0 indicates a reversed perfect ranking, where all positive
instances get the lowest ranks. The ROC AUC statistic can also be interpreted as
the area under a certain curve, but in this work we do not need this interpretation.
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Chapter 3

The G=MAT Model

All models are wrong, but some of them are useful.

George Box

Biological processes underlying the expression of genes in the cell are com-
plex and not yet completely understood. One of the best studied mechanisms
of expression regulation is the regulation of transcription by transcription factors

(TFs), that bind themselves to short motifs in the promoter regions of genes. Vast
amounts of microarray data on gene expression, as well as the availability of com-
plete genome sequences make this problem especially suitable for bioinformatical
analysis.

In this work we consider the task of determining, for a given set of TFs and
motifs, which TFs might bind to which motifs. Although current methods of
molecular biology allow to search for binding sites of a given TF experimentally
[HS02], these experiments are generally rather expensive and would bene�t greatly
from any hints given by external computational evidence. Our method provides
these hints by highlighting pairs of TFs and motifs that seem to have strong
in�uence on gene expression.

3.1 Notation

Genes and TFs. Consider all genes in an organism. We divide them in two
(non-overlapping) classes: TFs and target genes.

• The �rst class contains genes, that correspond to actual or putative tran-
scription factors. We call these genes TFs (or predictor genes) and denote
them as tk, k ∈ {1, 2, . . . , nT} where nT denotes the number of TFs.

• The second class contains all other, non-TF genes. We refer to them as target
genes or simply genes, and denote them as gi, i ∈ {1, 2, . . . , nG} where nG

27



is the number of target genes.

Microarray Data. Next, consider a set of microarray experiments. We denote
each experiment as aj, j ∈ {1, 2, . . . , nA}.

• Let G be the nG×nA gene expression matrix. That is, the value Gij denotes
the expression of (target) gene gi in the experiment aj.

• Similarly, let T be the nT×nA TF expression matrix : the value Tkj denotes
the expression of TF tk in the experiment aj.

Motifs. Finally, consider a set of motifs m`, ` ∈ {1, 2, . . . , nM} and let M be the
motif matrix : the value Mi` is 1, if gene gi has motif m` present in its promoter,
and 0 otherwise.

The matrices G, M and T make up the data to be analyzed. Figure 3.1 shows
a convenient way to visualize these matrices.

Figure 3.1: The matrices T (top), G (bottom left) and M (bottom right). Each
row of G corresponds to a certain gene, as does each row of M. Each column of
G corresponds to a certain array, as does each column of T. The rows of M can
be regarded as descriptive attributes for the rows of G, and the columns of T �
as the attributes for the columns of G.

Now we can formulate our task more precisely. We present a model that pre-
dicts the expression Gij of gene gi on the array aj, given the description of the gene
as a vector of its motif counts M(i∗) = (Mi1,Mi2, . . . ,MinM

), and the description
of the array as a vector of TF expression levels: T(∗j) = (T1j, T2j, . . . , TnTj)

T . We
estimate model parameters using the available microarray and sequence data and
interpret the obtained parameter values to gain useful insights into the regulatory
processes underlying gene expression.
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3.2 Model Speci�cation

Here we present the central contribution of this thesis, the G=MAT model. We
start with the de�nition and later on give the biological rationale for our choices.

De�nition 3.1 (The G=MAT model) Let Ĝij denote the prediction for the

gene expression value. The G=MAT model de�nes this value as follows:

Ĝij =

nM∑
`=1

nT∑
k=1

α`kMi`Tkj , (3.1)

where α`k ∈ R are model parameters.

Note that equation (3.1) is linear in terms of pairwise products Mi`Tkj � this
puts it into the well-studied realm of linear models. Also note that equation
(3.1) can be easily recast in matrix form and besides providing a nice name for
the model (the pun on �Gene MATrices� is intentional), this will simplify further
computations a lot.

Lemma 3.1 (The G=MAT model, matrix form) Let Ĝ denote the nG×nA

matrix with values Ĝij. Then equation (3.1) can be written in the following form:

Ĝ = MAT , (3.2)

where A is the nM × nT matrix with values α`k.

Proof. By de�nition (2.1) of matrix multiplication, for any two matrices A and
B:

(AB)ij =
∑
k

(A)ik(B)kj ,

and thus for any three matrices A, B and C:

(ABC)ij =
∑
k

(AB)ik(C)kj =
∑
`

∑
k

(A)i`(B)`k(C)kj .

Therefore,

(MAT)ij =
∑
`

∑
k

(M)i`(A)`k(T)kj =

nM∑
`=1

nT∑
k=1

α`kMi`Tkj ,

from which the result follows immediately.
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3.3 Rationale

The choice of equation (3.1) for modeling gene expression is based on several
assumptions and simpli�cations concerning the processes that underlie microarray
experiments.

Expression ≈ protein abundance. The �rst major assumption that we make
is that microarray expression measurements are a representative measure of protein
abundance in the cell. It is well known, however, that microarray measurements
only represent the amount of mRNA in the cell. This can be di�erent from the
actual protein abundance, because mRNA still needs to be translated into protein
and this translation process can be under separate regulatory control. However,
we can hope that on average the error is not too large. This assumption is rather
common (and often implicit) in other similar methods and without it we would
have to involve the issues of the translation process into the model. This could
make the model too complex to be usable.

Gene expression is regulated by TFs only. Secondly, we assume that in a
given microarray experiment, the expression Gij of any gene gi in any experiment
aj is only dependent on the expressions of the transcription factors (T1,j, T2,j, . . . )
in that experiment. In formal terms,

Gi,j = fi(T1,j, T2,j, . . . , TnT,j) ,

for some function fi, that is independent of the experimental setting. That means
that if in two di�erent experiments all the transcription factors happen to have
the same expression values, all of the genes will have the same expression values
too. This is certainly not the case in reality, because there are other factors
in�uencing gene expression, such as microRNAs, methylation, environment and,
probably most importantly, tissue-speci�c external signals. Nonetheless, it is still
a reasonable assumption to make, because, on average, TFs are believed to have
the most e�ect on gene expression.

TFs regulate genes by binding to motifs only. Thirdly, we assume that TFs
perform their functions by binding to certain motifs on the promoters of the genes.
That means, if two genes happen to have identical promoters, they should have
identical expression in any experiment. Together with the previous assumptions,
it follows that there should exist a single function f , common to all genes and
experiments, such that:

Gi,j = f(T1,j, T2,j, . . . , TnT,j;Mi,1,Mi,2, . . . ,Mi,nM
) .
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Moreover, we assume that presence or absence of motifs has a �switching� e�ect
on the transcription factors, that bind to them. If the gene has no binding sites
for a certain TF, the TF has no e�ect on that gene at all, and vice-versa: if the
gene has a certain binding site, it will be in�uenced by all transcription factors
that bind to it. We can represent this idea by modulating the transcription factor
expression by the (binary) motif presence values Mi`:

Gi,j = f


Mi,1T1,j, Mi,2T1,j, . . . Mi,nM

T1,j

Mi,1T2,j, Mi,2T2,j, . . . Mi,nM
T2,j

...
...

. . .
...

Mi,1TnT,j, Mi,2TnT,j, . . . Mi,nM
TnT,j

 .

Again, this might not necessarily be true. Processes like DNA methylation
and protein phosphorylation can interfere with binding, also the strength of the
binding site might be of importance. Nonetheless, according to current knowledge
this assumption is a rather viable approximation.

The regulation rule f is linear. Finally, in order to be able to construct
our model and obtain statistically reliable parameter �ts on the data, we have
to assume some reasonably simple, yet still informative form for the function f .
Assuming that f is continuous, we could use its Taylor expansion to approximate
it to arbitrary precision with a polynomial function:

f(Mi,1T1,j, . . . ,Mi,`Tk,j, . . . ,Mi,nM
TnT,j) ≈

≈ a+
∑
k,`

bk`Mi,`Tk,j +
∑
k,`,κ,λ

bk`κλMi,`Tk,jMi,λTκ,j + . . . .

However, already the second order polynomial would have more than n2
Mn

2
T pa-

rameters, which is way more that can be reliably estimated using a dataset of
conceivable size. Therefore, we choose to approximate f with a �rst-order model
and obtain our �nal result:

Gij = b+

nM∑
`=1

nT∑
k=1

α`kMi`Tkj + εij ,

where εij is the noise that cannot be explained by the approximation. We drop
the o�set term b from our model and consider an optional centering of the data
instead. In fact, microarray data is always nearly centered.

Clearly, this linear approximation is a strong and most probably a wrong as-
sumption in practice. However, as long as the factors responsible for the noise εij
are independent of (and thus orthogonal with) the input variables that we consider
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in our model, we are still going to obtain meaningful and interpretable parameter
values. Experiments on real data show that this is the case here.

3.4 Interpretation

The parameters of the model have a simple and clear interpretation: a large
positive (or negative) value of α`k shows that expression of TF tk positively (or
negatively) correlates with the expression of genes that have motif m` in their
promoter. In other words, it means that:

• If you increase the expression of transcription factor tk, leaving everything
else intact, the average expression level of genes having motif m` would
increase (or decrease) proportionally.

• If you add motif m` to the promoters of genes that didn't have it before, the
expression level of these genes would increase (or decrease) proportionally
with the expression level of TF tk.

Therefore, a large absolute value of α`k could indicate that either there is a direct
binding of TF tk to the motif m`, or the TF tk must participate in regulatory
process somehow involving motif m`.

Another way to see this is to consider disjunctive logical rules like the following:

up(g) = up(t1) | ¬up(t2) ,

i.e., �gene g is upregulated i� TF t1 is upregulated or TF t2 is downregulated�.
Suppose TF t1 regulates by binding to motifm1 and TF t2 regulates by binding

to motif m3. In this case, the rule can be rewritten as

up(g) = binds(m1, t1) &hasmotif(g,m1) &up(t1) |
¬(binds(m3, t2) &hasmotif(g,m3) &up(t2)) .

Now, if we denote up(tk) by a binary variable Tk∗, hasmotif(g,m`) by a binary
variable M∗` and binds(m`, tk) by α`k, we can rewrite any such rule in a form of
a familiar (but this time thresholded) linear function:

G = sign(α1,1M∗,1T1,∗ − α3,2M∗,3T2,∗) .

3.5 Related Work

Finally, we note that our approach �ts well with the mindset of many other
methods for the analysis of microarray or sequence data.
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Coexpression analysis. Perhaps the most common use of microarray data is
searching for groups of genes with similar expression pro�les. There is a reason to
believe that such coexpressed genes are also coregulated, and thus might contain the
same motifs in their promoters. This is, indeed, often the case, and therefore such
approaches have been extensively used for de-novo motif discovery from genomic
sequences [VBJ+00]. Our method can be regarded, in some sense, as a search for
genes that have some common motif and are coexpressed with some transcription
factor at the same time.

Predictive modeling. Various kinds of predictive models have been conceived
for microarray data before: predicting gene expression from TF expression [Soi03,
SKB03], predicting gene expression from motif presence using a linear model
[BLS01] and also predicting gene expression from both kinds of data using com-
binatorial analysis of motif correlation [PSC01], two-dimensional regression trees
[RZ06] and ADT-trees [MKW+04]. Our method continues this trend and uses a
linear predictive model.

3.6 Example

To better illustrate our ideas, let us design a small example of a regulatory
network that works in accordance with the proposed model.

Suppose that there are 5 transcription factors tk, 5 motifs m`, and that the
following relations hold among them:

• TF t1 is a transcriptional activator that binds to motif m1,

• TF t2 is a strong suppressor that binds to motif m2,

• TF t3 is an activator that also binds to m2,

• TF t4 can bind to m3 and m4 and acts as an activator when bound to m3

and as a suppressor when bound to m4.

• TF t5 is an activator that can bind to both m4 and m5, but its activity is
stronger when it is bound to m5.

These relations are depicted in Figure 3.2.
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m1 m2 m3 m4 m5

...ACTACT... ...AGTCAT... ...GACTAC... ...AAATTT... ...GGTAAT...

t1 t2 t3 t4 t5

activate
suppress

activate

activate activate
suppress

activate

Figure 3.2: The regulatory rules of the example. Arrows indicate which TF-s bind
to which motifs and what e�ect they have on transcription regulation.

The relations are described by the following parameter matrix:

A =

t1 t2 t3 t4 t5
m1 1 0 0 0 0

m2 0 −2 1 0 0

m3 0 0 0 1 0

m4 0 0 0 −1 1

m5 0 0 0 0 2

. (3.3)

A positive entry α`k indicates that TF tk induces transcription when bound
to motif m`. A negative entry denotes the suppressive e�ect of the corresponding
TF. Larger values indicate stronger e�ect.

Suppose we have a set of 5 genes, described by the following motif matrix:

M =

m1 m2 m3 m4 m5

g1 1 1 0 0 0

g2 0 0 1 1 0

g3 0 1 0 1 0

g4 0 0 1 0 0

g5 0 0 1 0 1

. (3.4)

That is, the promoter region of gene g1 contains motifs m1 and m2, the promoter
region of g2 contains m3 and m4, etc.

Imagine that we performed 4 microarray experiments a1, a2, a3, a4, and the
expression levels of the TF-s in these experiments are given by the following TF
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expression matrix:

T =

a1 a2 a3 a4

t1 1 0 1 0

t2 0 1 0 1

t3 1 1 0 1

t4 0 0 1 0

t5 0 1 0 0

. (3.5)

It means that TF t1 was upregulated in the experiments a1 and a3, TF t2 was
upregulated in the experiments a2 and a4, etc.

At last, suppose that genetic regulation indeed follows the proposed model.
Then we have all the information to determine the expression of each target gene
gi in each experiment aj. For example, the gene g1 contains motifs m1 and m2 and
is therefore regulated by the TF-s t1, t2 and t3. In the experiment a1 the TF-s t1
and t2 are upregulated. Each of them has an e�ect of 1 on the gene. Therefore
the total expression level of g1 in a1 is:

G1,1 = α1,1M1,1T1,1 + α2,2M1,2T2,1 + α2,3M1,2T3,1

= 1 · 1 · 1− 2 · 1 · 0 + 1 · 1 · 1 = 2 .

As another example, consider the expression of g1 in a2. Here the TF-s t2, t3
and t5 are upregulated, therefore:

G1,2 = 1 · 1 · 0− 2 · 1 · 1 + 1 · 1 · 1 = −1 .

Continuing in the same manner we can calculate the full expression matrix:

G =

a1 a2 a3 a4

g1 2 −1 1 −1

g2 0 1 0 0

g3 1 0 −1 −1

g4 0 0 1 0

g5 0 2 1 0

.

In reality, we only get to observe the matrices G,M and T. The task is
to estimate the matrix A and use it to make conclusions about the underlying
regulatory rules. In the following chapter we describe a number of ways to solve
this task and afterwards continue with the example.
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Chapter 4

Parameter Estimation Methods

Data mining � torturing the data until it confesses.

Now that we have provided the de�nition for the G=MAT model, let us present
a number of methods for parameter estimation from data.

Although numerous standard methods exist for the estimation of parameters
of linear models, none of them can be immediately applied to a realistically-sized
G=MAT dataset. Indeed, if we regard equation (3.1) as a linear model with input
variables M`Tk and output variable G (and having one data point for each pair
i, j), we shall end up with a data matrix of nM × nT variables and nG × nA data
points. However, even for a rather small yeast dataset, the number of genes nG

is about 6000 and nA, nM and nT can be of the order of 100. This results in
a data matrix of size 600 000 × 10 000 � way too large for convenient processing.
Another drawback of the straightforward linear model representation is that it can
be misleading: due to the structure of the problem, the �600 000 data points� in
the presented example actually correspond to a much lower input dimensionality
and may very well be not enough for a reliable �t of the 10 000 parameters.

Therefore, we propose customized versions of the classical estimation tech-
niques that exploit the structure of the problem.

4.1 Least Squares Regression

The most natural way of approaching the estimation problem is to search for
parameter matrix A, for which the mean squared error of model predictions is
minimal. This corresponds to the classical least squares �t.
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De�nition 4.1 (Least squares estimate) Let G, M and T be the proper

G=MAT matrices. De�ne the least squares �t for the parameter matrix ÂLS as

follows:

ÂLS = argmin
A
‖G−MAT‖2 , (4.1)

where ‖ · ‖2 here denotes the sum of squares of the elements of a given matrix.

The problem (4.1) always has a solution, although sometimes the solution is
not unique.

Theorem 4.1 Suppose the columns of M and the rows of T are linearly indepen-

dent, that is,

rank(M) = nM rank(T) = nT .

Then the problem (4.1) has a unique solution:

ÂLS = (MTM)−1MTGTT (TTT )−1 , (4.2)

where (·)T denotes matrix transposition.

Proof. First, note that the objective function in the problem (4.1) is a quadratic
convex function simply because the problem is equivalent to the least squares
problem of a �traditional� linear model (see Section 2.4.1). Therefore, there must
exist a minimum, not necessarily unique, which is achieved precisely in the point(s)
where the gradient becomes 0. Hence, to �nd the minimum, we solve as follows:

∂‖G−MAT‖2

∂A
= 0 ,

∂

∂A

∑
i,j

(Gij − (MAT)ij)
2 = 0 .

We take the derivative of the sum of squares in the same way as it was done in
Section 2.4.1: ∑

i,j

2(Gij − (MAT)ij)
∂(−(MAT)ij)

∂A
= 0 ,

∑
i,j

2(Gij − (MAT)ij)
∂
(
−
∑

`,k α`kMi`Tkj

)
∂A

= 0 ,∑
i,j

−2(Gij − (MAT)ij)Mi`Tkj = 0, for all `, k .
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We divide the last equation by −2 and rewrite it conveniently in matrix form:∑
i,j

(MT )`i(G−MAT)ij(T
T )jk = 0, for all `, k ,

MT (G−MAT)TT = 0 ,

MTGTT = MTMATTT . (4.3)

If rank(T) = nT and rank(M) = nM, the matrices TTT and MTM are necessarily
invertible (refer to equations (2.2) and (2.4) in Section 2.1). Consequently, we can
multiply equation (4.3) by (MTM)−1 on the left and by (TTT )−1 on the right,
obtaining precisely the solution (4.2).

If the matrices M and T do not have full rank, the solution is not unique.

Theorem 4.2 All solutions to the problem (4.1) can be computed as:

ÂLS = M+GT+ + (M+M− I)K + L(TT+ − I) , (4.4)

where (·)+ denotes the Moore-Penrose pseudoinverse of a matrix (see Section 2.1),

I denotes a properly-sized identity matrix and K and L are any two nM × nT

matrices.

Proof. As we know from the proof of Theorem 4.1, the solutions to the problem
(4.1) are precisely the solutions of equation (4.3). It remains to show that these
are precisely all matrices of the form (4.4).

Sufficiency: Let ÂLS be given by equation (4.4). Then it is a solution of (4.3).
To show it, we �rst note that

MTM(M+M− I) = MT (MM+M)−MTM = MTM−MTM = 0 , (4.5)

(TT+ − I)TTT = (TT+T)TT −TTT = TTT −TTT = 0 , (4.6)

due to the property (2.9) of a pseudoinverse. Thus,

MTMÂLSTTT = MTM(M+GT+ + (M+M− I)K + L(TT+ − I))TTT (4.7)

= MTMM+GT+TTT ,

because after opening the brackets in (4.7) the second and the third term in the
sum disappear due to (4.5) and (4.6). Using the pseudoinverse properties (2.13)
and (2.14) we can now obtain:

MTMÂLSTTT = (MTMM+)G(T+TTT ) = MTGTT ,

and therefore ÂLS is indeed a solution to (4.3).
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Necessity: Let A′ be some solution of (4.3). Choose K′ and L′ as follows:

K′ = (M+M− I)(A′TT+ −M+GT+)

L′ = (A′ −M+GT+)(TT+ − I)

And let
ÂLS = M+GT+ + (M+M− I)K′ + L′(TT+ − I) . (4.8)

Then
ÂLS = A′ .

To see that, simply substitute the expressions for K′ and L′. We do it in several
steps. First, note that for any X:

(X+X− I)(X+X− I) = X+XX+X− 2X+X + I

= X+X− 2X+X + I = I−X+X

(XX+ − I)(XX+ − I) = XX+XX+ − 2XX+ + I

= XX+ − 2XX+ + I = I−XX+

Next, consider the term (M+M− I)K′:

(M+M− I)K′ = (M+M− I)(M+M− I)(A′TT+ −M+GT+)

= (I−M+M)(A′TT+ −M+GT+)

= A′TT+ −M+GT+ −M+MA′TT+ + M+MM+GT+

= A′TT+ −M+GT+ −M+MA′TT+ + M+GT+

= A′TT+ −M+MA′TT+ (4.9)

Similarly for L′(TT+ − I):

L′(TT+ − I) = (A′ −M+GT+)(TT+ − I)(TT+ − I)

= (A′ −M+GT+)(I−TT+)

= A′ −M+GT+ −A′TT+ + M+GT+TT+

= A′ −M+GT+ −A′TT+ + M+GT+

= A′ −A′TT+ (4.10)

Finally, substitute (4.9) and (4.10) into (4.8):

ÂLS = M+GT+ + A′TT+ −M+MA′TT+ + A′ −A′TT+

= A′ + M+GT+ −M+MA′TT+ . (4.11)
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As we know, A′ satis�es (4.3). Therefore, it follows that

MTGTT = MTMA′TTT ,

M+(M+)TMTGTT (T+)TT+ = M+(M+)TMTMA′TTT (T+)TT+ .

Applying pseudoinverse properties (2.15) and (2.16) we obtain

M+GT+ = M+MA′TT+ ,

M+GT+ −M+MA′TT+ = 0 . (4.12)

Substituting (4.12) into (4.11) produces the desired result and thus completes the
proof.

In case the solution ÂLS is not unique, we shall only be interested in the
minimum-norm �t: the solution ÂLS∗, having the least possible sum-of-squares
‖ÂLS∗‖2:

Theorem 4.3 Let ÂLS∗ be the solution to (4.1) having the least possible sum of

squares ‖ÂLS∗‖2. Then:
ÂLS∗ = M+GT+ . (4.13)

Proof. Let ÂLS be any solution of (4.1). We are going to show that

‖ÂLS‖2 = ‖M+GT+‖2 + ‖(M+M− I)K + L(TT+ − I)‖2 (4.14)

and therefore
‖ÂLS‖ ≥ ‖M+GT+‖ = ‖ÂLS∗‖,

from which the desired result follows.

Let
M = UMDMVT

M, T = UTDTVT
T (4.15)

be the singular value decompositions of M and T respectively. Then, by de�nition
given in (2.7):

M+ = VMD+
MUT

M, T+ = VTD+
TUT

T (4.16)

Substitute the decompositions into equation (4.4):

ÂLS =(VMD+
MUT

M)G(VTD+
TUT

T)

+ (VMD+
MDMVT

M − I)K + L(UTDTD+
TUT

T − I)

=VM(D+
MUT

MGVTD+
T)UT

T

+ VM(D+
MDM − I)VT

MK + LUT(DTD+
T − I)UT

T
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Due to orthogonality of VM and UT:

‖ÂLS‖2 = ‖VT
MÂLSUT‖2 , (4.17)

where

VT
MÂLSUT =D+

MUT
MGVTD+

T

+ (D+
MDM − I)VT

MKUT + VT
MLUT(DTD+

T − I) .

Now note, that because D+
M and D+

T are diagonal matrices

(D+
MUT

MGVTD+
T)`k = (D+

M)``(U
T
MGVT)`k(D

+
T)kk . (4.18)

This value is zero when (D+
M)`` = 0 or (D+

T)kk = 0.

Recall that by de�nition given in equation (2.8), D+
M is a diagonal matrix with

(D+
M)`` =

{
1

(DM)``
, if (DM)`` 6= 0,

0, otherwise.

Therefore, D+
MDM is a diagonal matrix such that

(D+
MDM)`` =

{
1, if (D+

M)`` 6= 0,

0, otherwise.

Thus, (D+
MDM − I) is a diagonal matrix, such that:

(D+
MDM − I)`` = 0 ⇔ (D+

M)`` 6= 0 .

It follows that for each ` such that (D+
M)`` 6= 0 the corresponding row of (D+

MDM−
I)VT

MKUT is zero. By similar logic, for each k such that (D+
T)kk 6= 0 the corre-

sponding column of VT
MLUT(DTD+

T − I) is zero. Therefore, for each (`, k), such
that (D+

M)`` 6= 0 and (D+
T)kk 6= 0

((D+
MDM − I)VT

MKUT + VT
MLUT(DTD+

T − I))`k = 0 .

But due to (4.18), these are exactly those (`, k) for which (D+
MUT

MGVTD+
T)`k can

be nonzero. Therefore,

‖VT
MÂLSUT‖2 =‖D+

MUT
MGVTD+

T‖
2 (4.19)

+ ‖(D+
MDM − I)VT

MKUT + VT
MLUT(DTD+

T − I)‖2 .
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Using orthogonality of VM and UT again:

‖D+
MUT

MGVTD+
T‖

2 = ‖VMD+
MUT

MGVTD+
TUT

T‖2 = ‖M+GT+‖2 , (4.20)

and similarly:

‖(D+
MDM − I)VT

MKUT + VT
MLUT(DTD+

T − I)‖2

= ‖VM((D+
MDM − I)VT

MKUT + VT
MLUT(DTD+

T − I))UT
T‖2 (4.21)

= ‖(M+M− I)K + L(TT+ − I)‖2 .

Finally, substituting (4.17), (4.20) and (4.21) into (4.19), we obtain (4.14), which
completes the proof.

The solution to the least squares regression problem can be computed with
reasonable e�ciency:

Theorem 4.4 Let n = max(nG, nA, nM, nT). The solutions of equations (4.2) and

(4.13) can be computed in time O(n3) and memory O(n2).

Proof. Equation (4.2) contains only matrix multiplications and inversions. Each
of these operations can be trivially implemented in time O(n3) and memory O(n2).

Equation (4.13) contains matrix multiplications and Moore-Penrose pseudoin-
verses. As the latter can be computed using singular value decomposition in time
O(n3) [Cha82], the whole computation time is again O(n3).

More precisely, the time complexity of the computation depends linearly on
the number of genes nG and the number of microarrays nA, and is cubic in the
number of motifs and TFs nM and nT. Memory requirements are linear in nG and
nA, and quadratic in nM and nT. This is important, as in many practical cases
the number of genes nG is signi�cantly larger than nA, nM or nT.

Unfortunately, there is one serious drawback of the least squares estimate: it
can be rather unreliable for noisy data when the number of parameters is large or
the input vectors are highly correlated.

In particular, as long as the number of parameters is close to the dimensionality
of the input space (i.e., nM ≈ nA and nT ≈ nG), the solution will be unstable and
very sensitive to noise in the data, because in this case the model is �powerful
enough� to �t the noise. For example, when T and M are square invertible
matrices, the model error is always 0, for any dataset. A common way to deal
with this problem is regularization.
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4.2 Regularized Least Squares Regression

The idea of regularization is to �enforce� the solution with the smallest possible
parameter values by penalizing the norm of the parameter matrix A.

De�nition 4.2 (`2-norm regularized least squares estimate) De�ne the reg-
ularized least squares �t for the parameter matrix ÂRLS as follows:

ÂRLS = argmin
A

(
‖G−MAT‖2 + λ‖A‖2

)
, (4.22)

where λ ≥ 0 is the regularization parameter.

Regularization e�ectively makes the problem well-posed (the solution is always
unique for λ > 0) and allows to trade o� stability versus prediction accuracy.
Setting λ = 0 will give us the best possible prediction, but low stability for noisy
data � it is just the usual least squares solution. Setting λ → ∞ will result in a
constant solution ÂRLS = 0, which is very stable, but useless for predicting. By
choosing λ somewhere in between, we can obtain both satisfactory stability and
prediction quality.

Unfortunately, we could not derive a closed analytical solution for the problem
(4.22). We therefore propose to solve it using iterative methods, such as the
straightforward gradient descent-based approach. Due to strict convexity of the
objective function for λ > 0, it is guaranteed to converge to the optimal solution,
and it can be implemented with marginal, yet still useful e�ciency.

Theorem 4.5 Let n = max(nG, nA, nM, nT). The solution of equation (4.2) can

be computed using gradient descent in time O(kn3) and memory O(n2), where k

is the number of gradient descent iterations.

Proof. Each step of the gradient descent requires a computation of the gradient
of the objective function. This gradient is:

∂‖G−MAT‖2 + λ‖A‖2

∂A
= 2MT (G−MAT)TT + 2λA =

= 2(MTGTT )− 2(MTM)A(TTT ) + 2λA .

Therefore, in each iteration of the algorithm we need to perform a number of
matrix multiplications and additions, all of which can be done in time O(n3) and
memory O(n2).

Again, it is worth noting, that the computation complexity is only linear in
nG.
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To be able to compute a regularized estimate e�ciently, we also propose a
ridge regression-like estimate that combines the stability of a regularized solution
and the e�ciency of ordinary least squares.

De�nition 4.3 (Ridge regression estimate) De�ne the ridge regression �t for
the parameter matrix ÂRR as follows:

ÂRR = (MTM + λMI)−1MTGTT (TTT + λTI)−1 , (4.23)

where λM, λT ≥ 0 are the regularization parameters and I is the identity matrix.

Besides just mimicking the classical ridge regression syntactically, this method
does correspond to it in spirit. To demonstrate that, let us �rst return to the clas-
sical least squares estimate and examine an interesting property of that solution.

Theorem 4.6 (2-step linear regression) Let ÂLS be the minimum norm least

squares �t (4.13) for a given dataset (G,M,T). It is possible to compute ÂLS in

two steps:

• First compute ĈLS as a minimum norm least squares �t for the model G =

MC.

• Then, compute ÂLS as a minimum norm least squares �t for the model ĈLS =

AT.

Proof. The minimum norm least squares �t ĈLS for the model G = MC can
be computed as:

ĈLS = M+G .

The minimum norm least squares �t ÃLS for the model ĈLS = AT can be com-
puted as:

ÃLS = ĈLST
+ .

By combining the two equations above, we see that �nal ÃLS is indeed equal to
ÂLS from equation (4.4):

ÃLS = ĈLST
+ = M+GT+ = ÂLS .

The observation above shows, that the matrix A in G=MAT can actually be
computed step by step:

• First express the gene expression values G as linear combinations of motifs:
G = MC. This results in a nM × nA matrix C, that, in a sense, shows the
�activity� of each motif in each experiment.
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• Next, express this �motif activity� in each experiment as a linear combina-
tion of transcription factor activities: C = AT. Now the resulting A can be
interpreted as showing the �transcription factor contribution to motif con-
tribution to gene activity�, which is exactly how we interpret A in G=MAT.
Of course, the order of the steps can be reversed.

Now we can easily interpret the ridge-regression estimate as a two-step linear
regression with `2-regularization at each step (see Section 2.4.1).

4.3 Sparse Regression

Due to the speci�cs of the problem, we are only interested in a small number
of most in�uential parameters of our model. Therefore, we would like to obtain a
parameter �t with as many zero coe�cients as possible. This can be achieved by
penalizing every nonzero coe�cient. This is the main idea of sparse regression.

De�nition 4.4 (`0-norm regularized estimate) De�ne the `0-norm regular-
ized �t for the parameter matrix Â`0 as follows:

Â`0 = argmin
A

(
‖G−MAT‖2 + λ‖A‖0

)
, (4.24)

where λ ≥ 0 is the regularization parameter and ‖ · ‖0 denotes the `0-norm � the

number of nonzero elements in a given matrix.

The computation of this `0-norm regularized estimate, is a di�cult (NP-comp-
lete) problem, therefore in practice we must use an approximation. The `1-norm
regularization is known to result in sparse estimates that are nearly as good as
the `0-ones.

De�nition 4.5 (`1-norm regularized estimate) De�ne the `1-norm regular-
ized �t for the parameter matrix Â`1 as follows:

Â`1 = argmin
A

(
‖G−MAT‖2 + λ‖A‖1

)
, (4.25)

where λ ≥ 0 is the regularization parameter and ‖ · ‖1 denotes the `1-norm � the

sum of absolute values of the elements in a given matrix.

Similarly to the `2-norm regularization, no simple closed-form solution prob-
ably exists for sparse regression, but we can solve it with iterative methods such
as iterative thresholding [DDDM04] in at least O(kn3) time. Another interesting
option is to apply the Least Angle Regression (LARS) algorithm [EHJT04]. The
LARS algorithm can reconstruct the whole set of solutions to equation (4.25) for
all values of λ, because this set can be represented as a single piecewise-linear path
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with O(nM×nT) nodes. In practice it means that we can request the algorithm to
output N most important coe�cients only: these correspond to the �rst N nodes
of the path. The problem with LARS, however, is that although the algorithm
does lend itself to some minor G=MAT-speci�c optimizations, we could not �nd a
way to reduce its overall complexity. In each iteration of the algorithm, a certain
equiangular vector needs to be computed, which requires an inversion of a k × k
matrix, where k is the iteration number. As the complete run of the algorithm
requires about nM× nT iterations, the overall complexity of a full run of LARS is
dominated by the term O(n4

Mn
4
T). Nonetheless, the �rst iterations of the algorithm

are quite fast.

4.4 Correlation-based Estimate

We can regard G=MAT as a generative probabilistic model. It turns out that
if we impose the (not very unrealistic) assumption, that the input variables are
uncorrelated, we can obtain a simple estimate for the parameters with some nice
properties.

In the following, let Tk denote a random variable that represents the expression
value of TF tk in a randomly chosen microarray experiment. Namely, we regard
the k-th row of matrix T as containing the realizations of this random variable.
By M` we denote the random variable that expresses the presence of motif m` in
a randomly chosen gene. The realizations of this variable are given in the `-th
column of matrix M. Finally, G denotes the random variable, representing the
expression of a randomly chosen target gene in a randomly chosen experiment.
Realizations of this variable are all the values in the matrix G. In these terms,
the G=MAT can be stated as a generative probabilistic model.

De�nition 4.6 (Probabilistic G=MAT) Let (M`)`∈{1...nM}, (Tk)k∈{1...nT} and

G be random variables. We say that these variables are G=MAT-distributed with
parameters (α`k), if they satisfy the equation:

G =

nM∑
`=1

nT∑
k=1

α`kM`Tk + ε , (4.26)

where ε is a random variable, independent of M` and Tk for all ` and k.

If we assume that the input variables M` and Tk are uncorrelated, we can
express the parameters α`k in a convenient way.

Theorem 4.7 (Correlation-based estimate) Let (G,M`,Tk) be G=MAT-dis-

tributed random variables with parameters (α`k). Suppose that the variables M`

47



and Tk are not constant:

D(M`) 6= 0, D(Tk) 6= 0 for any ` ∈ {1 . . . nM}, k ∈ {1 . . . nT},

and all pairwise uncorrelated:

cov(M`,Mλ) = 0, for any ` 6= λ,

cov(Tk,Tκ) = 0, for any k 6= κ,

cov(M`,Tk) = 0, for any `, k .

Then it holds that:

α`k =
cov(G, (M` −M`)(Tk − Tk))

D(M`) D(Tk)
, (4.27)

where cov(X,Y) = E((X−X)(Y−Y)) denotes covariance, D(X) = cov(X,X) denotes

variance and X = E(X) denotes the mean of a random variable X.

To prove this theorem we shall use the following result.

Lemma 4.8 Let M`, Tk be pairwise uncorrelated random variables. Then

cov(MλTκ, (M` −M`)(Tk − Tk)) =

{
D(M`) D(Tk), if λ = `, κ = k,

0, otherwise.
(4.28)

Proof. Using the equation cov(X,Y) = E(XY) − E(X) E(Y) and remembering
that M` and Mλ are not correlated with Tk and Tκ, we compute:

cov(MλTκ, (M` −M`)(Tk − Tk)) =

= E(MλTκ(M` −M`)(Tk − Tk))− E(MλTκ) E((M` −M`)(Tk − Tk))

= E(Mλ(M` −M`)) E(Tκ(Tk − Tk))− E(MλTκ) E(M` −M`) E(Tk − Tk)

= E(Mλ(M` −M`)) E(Tκ(Tk − Tk)) . (4.29)

For ` 6= λ, this equation evaluates to:

E(Mλ(M` −M`)) E(Tκ(Tk − Tk)) = E(Mλ) E(M` −M`) E(Tκ(Tk − Tk)) = 0 ,

and similarly for k 6= κ. Finally, for ` = λ, k = κ:

E(M`(M` −M`)) E(Tk(Tk − Tk)) = D(M`) D(Tk) ,

which completes the proof.

We can now prove the main theorem.
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Proof of Theorem 4.7. By de�nition of random variables G,M` and Tk:

G =
∑
λ,κ

αλκMλTκ + ε .

Therefore,

cov(G, (M` −M`)(Tk − Tk)) =∑
λ,κ

αλκ cov(MλTκ, (M` −M`)(Tk − Tk)) + cov(ε, (M` −M`)(Tk − Tk)) , (4.30)

because of the linearity (2.21) of the covariance operation. The last term in the
sum (4.30) is zero:

cov(ε, (M` −M`)(Tk − Tk)) = 0 ,

because ε is independent of M` and Tk.

All the remaining terms can be evaluated using Lemma 4.8. It follows that the
only nonzero term in the sum (4.30) is the one where λ = ` and κ = k. The whole
equation now becomes

cov(G, (M` −M`)(Tk − Tk)) = α`k D(M`) D(Tk) ,

from which the result follows.

Note that the assumption of pairwise uncorrelation is not very unrealistic. In-
deed, experiments show that the motif presence vectors for all reasonably di�erent
motifs are nearly perfectly uncorrelated on real biological data. The expression
pro�les of transcription factors do often have a degree of correlation, however on
average it is rather low � less than 0.33 in 90% of cases, see Section 5.3. Also note
that we do not impose any other constraints on the distributions of the variables.

In return for this mild assumption we get a method of estimation of α`k, that
only requires the data about motif m` and TF tk. That means, that even if some
of the important motifs or TFs are missing from our dataset, we can still use this
method to �nd out the parameters α`k for those motifs and TFs that are available.

The computation of a single coe�cient with this method requires a covariance
computation involving the whole matrix G, therefore to estimate the whole matrix
A, O(nGnMnAnT) operations need to be performed. It is one order of magnitude
less e�cient than the least squares or ridge regression estimate, but still quite
tolerable for many datasets. This method lends itself easily to nearly unlimited
parallelization, i.e., each coe�cient can be computed independently of the others,
and the covariation computation for each coe�cient is highly parallelizable.

Additionally, it turns out that it is possible to compute a good approximation to
the correlation-based estimate e�ciently using the familiar least-squares technique.
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Centered Least Squares

Let (G,M`,Tk) be G=MAT-distributed random variables that satisfy the con-
ditions of Theorem 4.7. Let (G,M,T) be a G=MAT dataset obtained as a sample
of these variables. It turns out that if we apply the least squares method to the
centered versions of matrices G, M and T, we shall obtain consistent estimates
for α`k.

In the following, let M(∗`) denote the average of the values in the `-th column
of M, let T(k∗) denote the average of the k-th row of T and let G denote the
average of all elements of G. Let M′ be the column-wise centered version of the
matrix M, T′ be the row-wise centered version of the matrix T, and G′ be the
centered version of the matrix G. That is,

(M′)i` = Mi` −M(∗`) , (T′)kj = Tkj −T(k∗) , (G′)ij = Gij −G .

Finally, let Â′LS be the least-squares estimate for the model:

Ĝ′ = M′AT′ .

Then the following result holds.

Theorem 4.9 (Centered least squares) Let (G,M`,Tk) be random variables,

satisfying the conditions of Theorem 4.7. Let (G,M,T) be a sample, obtained

from these variables and let Â′LS be obtained as described above. Then as the

sample size increases, i.e., nG, nA →∞, the elements of the matrix Â′LS converge

almost surely to the true model parameters (α`k).

Proof. First, note that in the process nG →∞ the matrix 1
nG

M′TM′ converges
to the matrix of motif covariances. Indeed,(

1

nG

M′TM′
)
`λ

=
1

nG

∑
i

(Mi` −M(∗`))(Miλ −M(∗λ)) ,

which, by strong law of large numbers, converges almost surely to cov(M`,Mλ),
and therefore(

1

nG

M′TM′
)
`λ

a.s.→ cov(M`,Mλ) =

{
D(M`), if ` = λ,

0, otherwise.
(4.31)

Similarly, in the process nA →∞:(
1

nA

T′T′
T

)
kκ

a.s.→ cov(Tk,Tκ) =

{
D(Tk), if k = κ,

0, otherwise.
(4.32)

50



Thus, the matrices M′TM′ and T′T′T converge with probability 1 to diagonal
matrices with nonzero elements on the diagonal. The latter matrices are invertible
and therefore, for su�ciently large nG and nA, the matrices M′TM′ and T′T′T

are also invertible, because the determinants of those matrices must converge to
nonzero values. It follows that for su�ciently large nG and nA the least squares
estimate Â′LS can be computed using equation (4.2):

Â′LS = (M′TM′)−1M′TG′T′
T
(T′T′

T
)−1

=

(
1

nG

M′TM′
)−1(

1

nGnA

M′TG′T′
T

)(
1

nA

T′T′
T

)−1

. (4.33)

Finally, consider the matrix 1
nGnA

M′TG′T′T :(
1

nGnA

M′TG′T′
T

)
`k

=
1

nGnA

∑
i,j

(Gij −G)(Mi` −M(∗`))(Tkj −T(k∗)) ,

which converges to cov(G, (M` −M`)(Tk − Tk)):(
1

nGnA

M′TG′T′
T

)
`k

a.s.→ cov(G, (M` −M`)(Tk − Tk)) . (4.34)

The equations (4.31), (4.32) and (4.34) demonstrate that all terms on the right
side of the equation (4.33) converge. Therefore, Â′LS must converge too:

(Â′LS)`k
a.s.→ 1

D(M`)
· cov(G, (M` −M`)(Tk − Tk)) ·

1

D(Tk)
= α`k

by Theorem 4.7.

Note that this is a rather unintuitive result. It states that in order to estimate
the G=MAT parameters for given matrices G,M,T we can instead estimate them
for a completely di�erent model, not the one that was used to generate these
matrices.

For example, let G,M,A,T be the matrices, satisfying

G = MAT .

and let G′,M′,T′ the properly centered versions of these matrices. Then, in
general,

G′ 6= M′AT′ .

This result allows us to compute an approximation to the estimate (4.27) in
time O(n3), where n = max(nG, nA, nM, nT). The experiments in Section 5.5.3
demonstrate that this approximation can be quite good and especially useful for
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datasets where some motifs and TFs are missing.

4.5 Randomization-based Attribute Selection

Finally, we propose three randomization techniques that aim to identify the
most �interesting� coe�cients, rather than estimate their exact values. All of them
are designed as wrappers around an existing method for parameter estimation. In
the following we denote this method by A(·). In formal terms, let A denote some
function, that, when given matrices G,M and T, outputs an estimate for G=MAT
parameters:

Â = (α̂`k)← A(G,M,T).

We consider a probabilistic view on G=MAT, presented in De�nition 4.6. That
is, we regard the given matrices G, M and T as realizations of G=MAT-distributed
random variables G, M` and Tk. In this case, the estimated parameters α̂`k can
also be regarded as realizations of some random variables A`k. In particular, we
write A = A(G,M,T) to indicate, that the variables A`k are obtained by generating
a G=MAT dataset (G,M,T) as a realization of variables (G,M,T) and using the
function A(·) to estimate its parameters.

The �rst method we propose is based on the idea, that the estimated values
for the most interesting coe�cients should be positive with high probability.

De�nition 4.7 (Positivity-based attribute selector) Let A = A(G,M,T) be

the G=MAT parameter estimate obtained using method A(·).
De�ne for each (`, k) the positivity weight of attribute α`k as the probability

that its estimated value will be greater than zero:

w`k = Pr[A`k > 0] . (4.35)

In practice we can estimate the positivity weight in a cross-validation-like man-
ner: by selecting random subsets of rows and columns of G together with corre-
sponding rows of M and columns of T, obtaining the estimate Â and counting for
each coe�cient the fraction of cases when it turns out to be greater than zero.

Another way to assess the relevance of the parameters is to compare the true
estimated values with estimates obtained on a randomized dataset.

De�nition 4.8 (P-value-based attribute selector) Let GRND be a matrix, ob-

tained by randomly permuting rows and columns of G. Let ARND = A(GRND,M,T)

be the estimate obtained on this randomized dataset.

De�ne for each (`, k) the p-value score of the coe�cient α`k as

p`k = P (ARND
`k < α̂`k) .
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In practice, we obtain the p-value estimate by shu�ing the values of G sev-
eral times and for each coe�cient counting the fraction of iterations, where the
randomized estimate is less than the estimate obtained on the non-permuted data.

This way, we obtain for each α`k an estimate of how improbable would it be to
have a parameter value that large on a randomized dataset. Therefore, parameters
α`k, that turn out to have p-values close to 1 can be believed to have a signi�cant
e�ect on the true output G.

A similar, yet slightly more robust approach would be to compute the Z-score
of true estimates with respect to the distribution of the estimates on random data.

De�nition 4.9 (Z-score-based attribute selector) Let ARND
`k be the random-

ized estimate obtained as described in previous de�nition.

De�ne for each (`, k) the z-score of attribute α`k as

z`k =
α̂`k − E(ARND

`k )√
D(ARND

`k )
, (4.36)

where E(·) denotes the mean and D(·) � variance of a random variable.

This way, for each estimated coe�cient we obtain a score of how large is this
estimate in comparison to estimates, obtained on randomized data. The compu-
tation of z-scores is similar to that of p-values. This time, instead of counting the
fraction of iterations where the true estimate is greater than the randomized one,
we compute the mean and standard deviation of the randomized estimates and
use these values to normalize the true estimate according to equation (4.36).

In our experiments we use the ridge-regression estimation method for the func-
tion A(·), because it is the most e�cient of the available strategies. In this case
all three of the methods above can be implemented in time O(cn3), where c is the
number of randomization iterations.

4.6 Example (continued)

Let us continue the example from Section 3.6 and illustrate how the proposed
methods would restore the �regulatory relations� A, from the matrices G, M and
T.

Least squares regression. As the number of TFs in the example is greater
than the number of arrays, the matrix TTT is rank-de�cient and the solution to
(4.1) is not unique. We therefore employ the minimum-norm solution given by
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equation (4.13). We obtain then:

ÂLS∗ =

t1 t2 t3 t4 t5
m1 0.75 −0.25 0.25 0.25 0

m2 0.75 −1.25 0.25 −0.75 0

m3 0.25 0.25 −0.25 0.75 0

m4 −0.25 −0.25 0.25 −0.75 1

m5 0 0 0 0 2

.

Naturally, the estimated parameter values are not exactly equal to the true ones.
Nonetheless, they do show quite nicely, which coe�cients have the most impor-
tance. For example, the parameters with the largest positive and largest negative
values are correctly identi�ed, 4 out of 5 parameters with (true) values 1 have
their values estimated as ≥ 0.75, etc.

Regularized regression. As already noted, the least squares estimate can be-
have badly when data is noisy and inputs are correlated. Regularized estimates
are more robust in this setting, because they penalize unnecessarily large model
coe�cients. To illustrate this issue, we shall modify the example by considering
the following matrix T:

T =

a1 a2 a3 a4

t1 1 1 1 0

t2 1 1 1 0.25

t3 1 1 1 0.5

t4 1 1 0 0.75

t5 1 1 0 1

. (4.37)

We recompute the new value for the matrix G and add gaussian noise with
standard deviation 0.5 to its elements. Now that the data is noisy and the TF
expression pro�les are so similar, any estimation method will certainly have di�-
culties in determining which of the TFs are actually responsible for gene expres-
sion. Regularized methods, however, should outperform the straightforward least
squares regression. We shall demonstrate this by considering a simple problem of
detecting the parameter with the largest value (which is, as we know, α5,5). We
shall measure over 1000 iterations (each time with a di�erent G due to noise), how
often the least squares estimate reports α̂5,5 as the largest coe�cient, and how it
compares to the performance of the estimates obtained using `2-norm regulariza-
tion, ridge regression and sparse `1-norm regularization. We run the algorithms
with a number of di�erent values of the regularization parameter (where for ridge
regression we only consider λT and set λM = 0). The results are presented in
Figure 4.1, that clearly demonstrates the advantages of regularization.
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Figure 4.1: The graphs show how often, on average, di�erent estimation methods
report α̂5,5 as the largest coe�cient (methods were tested over a range of values
for the regularization parameter λ). Results clearly demonstrate how regularized
estimates outperform ordinary least squares regression.

It should be noted though, that if the input variables (i.e., TF expression
pro�les and motif presence vectors) were orthogonal, regularization would result
in just a uniform scaling (in case of `2-norm) or shrinking (in case of `1-norm) of
parameters and would therefore provide no signi�cant bene�ts for our purposes.

Randomization-based methods. The idea of the proposed randomization-
based methods is to take an existing method A(·), and �improve� it for the purposes
of attribute selection using randomization. Let us take the same task of detecting
the maximum-value coe�cient α5,5 and compare the performance of the ridge
regression estimate, already considered above, with a P-value-based and a Z-score-
based estimators built with it. As in previous case, we run 1000 iterations, each
time adding N(0, 0.5) Gaussian noise to G, and compare the results for several
values of the regularization parameter λT. Figure 4.2 depicts the results. It is
clearly seen how randomization helps to increase the performance for at least
some values of the regularization parameter. As it will become clear further, in
other settings randomization-based techniques can show even better results.

Correlation-based estimate. To illustrate the properties of the correlation-
based estimate, we shall consider a noise-free, full-rank dataset. We shall use
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Figure 4.2: The graphs show how often, on average, di�erent estimation methods
report α̂5,5 as the largest coe�cient. Results demonstrate how randomization can
sometimes boost the performance of a non-randomized method.

the original example matrices A, M and T from equations (3.3), (3.4) and (3.5)
respectively, and append one additional column to the matrix T:

T =

a1 a2 a3 a4 a5

t1 1 0 1 0 0

t2 0 1 0 1 0

t3 1 1 0 1 0

t4 0 0 1 0 1

t5 0 1 0 0 1

.

The resulting full-rank dataset contains enough information for the least squares
method to restore the true A perfectly, yet the performance of the correlation-
based estimate is rather poor. The estimated parameters are the following:

ÂCORR =

t1 t2 t3 t4 t5
m1 2.5 −1.7 0 0 −2.1

m2 1.8 −1.0 0.8 −0.8 −1.5

m3 −1.8 1.0 −0.8 0.8 1.5

m4 −0.6 0.8 1.1 −1.1 0.3

m5 −1.6 0.4 −1.0 1.0 2.1

.
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The reason for this low performance lies in two properties of our dataset. First
of all, the method does not tolerate any strong correlations of the input variables,
that are present in our data. We can clearly see here, how the perfectly (negatively)
correlated columns m2 and m3 of the matrix M result in the corresponding rows of
the matrix A being also perfectly correlated. For the similar reason the columns
t3 and t4 make no sense. Secondly, the method requires a much larger dataset
to obtain meaningful estimates. That is why it is close to useless on our small
example. As we shall see later, in a di�erent setting this method can signi�cantly
outperform other approaches.
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Chapter 5

Model Performance Analysis

Experience is something you don't get until just after you

need it.

Murphy's Law

In the previous chapter we have presented a number of methods for estimating
parameters of G=MAT model from data. In this chapter we analyze the appli-
cability of these methods to biological data. We start by considering a classical
yeast microarray dataset by Spellman et al. [SSZ+98]. The analysis of this dataset
highlights some important issues, which we then study in detail using a similar
arti�cially generated dataset. Finally, we use the arti�cial dataset to compare the
performance of di�erent G=MAT estimation methods.

5.1 The Spellman Dataset

For the �rst application of our method on real biological data we consider
the microarray dataset of Spellman et al. [SSZ+98]. The dataset contains 77
microarray experiments, measuring the expression of 6178 yeast genes at di�erent
points of the cell life cycle.

Data preparation Some preprocessing was required to obtain the matrices G

and T.

• The dataset contained missing values. We imputed them using the KNN-

impute algorithm [TCS+01] implemented in Matlab.

• Of all the genes present in the dataset, 318 had the transcription regulator

activity GO annotation (according to the data of the SGD project [SGD]).
We selected these 318 genes as transcription factors. The expression values
of these TFs were collected in the 318× 77 matrix T.
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• From other 5860 genes we selected 5766 for which the genomic sequence was
available via the SGD website. The expression values of these genes were
collected in the 5766× 77 matrix G.

Next, we prepared the motif matrix M as follows.

• For each target gene we downloaded its promoter region: 800-nucleotide-long
genomic sequence upstream of the gene's translation start site. We obtained
the data from the SGD website.

• We used the TRANSFAC database of regulatory motifs and selected the 36
known yeast motifs there.

• We used the storm [SSZ07] tool to match TRANSFAC motifs on the pro-
moter. As a result we obtained the 5766× 36 binary matrix M.

G=MAT analysis Once the data is presented in the form of the G, M and T

matrices, we are free to apply any of the G=MAT parameter estimation methods.
We chose to apply the least-squares estimate (4.13), because this method is the
most straightforward and requires setting no parameters. Recall that each coe�-
cient α̂`k of the resulting parameter matrix ÂLS∗ measures a putative association
between motif m` and TF tk. Table 5.1 presents the pairs of motifs and TFs that
correspond to the 5 coe�cients of the matrix ÂLS∗ with the largest values.

5.2 Evaluation of Results

As we have chosen a true biological dataset for the experiment, we can not
know the corresponding �true� parameter matrix A. As a result, we lack any gold
standard for objectively assessing the relevance of the obtained results and have
to limit ourselves with the following two options:

• evaluating the biological meaningfulness of the results manually,

• examining the predictive performance of the model.

The two evaluations seem to di�er radically.

Biological relevance of the results. The top-scoring motif-TF pairs, pre-
sented in Table 5.1, make complete sense. In particular, the top three entries
associate the known binding site of the Gal4p transcription factor with the Gal1p,
Gal3p and Gal80p proteins. This is in perfect accordance with current biological
knowledge [LVZ95].

• Overexpression of galactokinase-coding gene GAL1 results in activation of
Gal4p protein [BOH90, BH92]. This process is probably the reason for strong
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Motif TF Score

F$GAL4_01 GAL1 0.30
Binding site for

GAL4.

Galactokinase, phosphorylates alpha-D-galactose to alpha-D-

galactose-1-phosphate in the �rst step of galactose catabolism.

F$GAL4_01 GAL3 0.26
Binding site for

GAL4.

Transcriptional regulator involved in activation of the GAL

genes in response to galactose.

F$GAL4_01 GAL80 0.18
Binding site for

GAL4.

Transcriptional regulator involved in the repression of GAL

genes in the absence of galactose.

F$MCM1_02 SFG1 0.12
Binding site

for MCM1 and

SFF.

Nuclear protein, putative transcription factor required for

growth of super�cial pseudohyphae (which do not invade the

agar substrate) but not for invasive pseudohyphal growth.

F$MCM1_02 ACE2 0.12
Binding site

for MCM1 and

SFF.

Transcription factor that activates expression of early G1-

speci�c genes, localizes to daughter cell nuclei after cytokinesis

and delays G1 progression in daughters, localization is regu-

lated by phosphorylation.

Table 5.1: G=MAT analysis of the Spellman dataset. The table presents �ve
motif-TF pairs having the largest values of the corresponding parameters α̂`k.
Motifs are in the leftmost column and are identi�ed by their TRANSFAC identi-
�ers. The middle column contains TFs, which are identi�ed by their gene names.
The rightmost column contains the corresponding values α̂`k.

positive association between GAL1 expression and presence of the Gal4p
binding site: high expression of GAL1 induces expression of Gal4p, which
binds to that motif.

• GAL3 is a gene highly similar to GAL1 [PRHR00]. The corresponding
protein Gal3p forms a complex with Gal80p and thus relieves inhibition of
Gal4p [LVZ95]. This explains the positive association of GAL3 with the
Gal4p binding motif.

• Gal80p is a transcriptional inhibitor of GAL genes (in particular, GAL4 ).
Inhibition is relieved by Gal1p or Gal3p binding [TRR02]. Therefore, we
might expect Gal80p to be strongly negatively associated with the Gal4p
binding site: the higher the expression of Gal80p, the more repressed is
Gal4p, the less e�ect it has on the genes with the corresponding motif in the
promoter. Our analysis, on the contrary, indicates a positive association.
This might be due to the complex regulatory feedback loops involved in the
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regulation of the whole family of GAL genes. Such nonlinear relations cannot
be accounted for by our simple linear model. Nonetheless, we consider the
discovered relation a success rather than a failure of the analysis.

It is very unlikely that this result (three obviously successful pairs among the
top �ve) could be obtained by chance. To verify that, we considered all motif-TF
pairs, where the TF belonged to the same family of proteins as the binding factor
for the motif. For example, in the above case, GAL1, GAL3 and GAL80 all belong
to the same family as GAL4 which is the binding factor for motif F$GAL4_01.
There were 67 such matching pairs among the 36×318 coe�cients in the parameter
matrix. If we were to pick 5 pairs at random, we would expect less than 0.03 hits
on average. Getting 3 hits instead exceeds the expectations more than 100-fold.

Predictive performance. We could expect that if our model parameters have
biological relevance, the model should predict well. Unfortunately, it turns out that
the predictive performance of the constructed model is very poor. The coe�cient
of determination (see Section 2.4.2) of the model is barely above 0.05, see below.

Mean squared error: 0.1494

Variance of G: 0.1576

Coe�cient of determination, R2: 0.0520

It might seem surprising, that a model which produces biologically meaningful
results predicts so badly. In the following we study this issue on an arti�cially
generated dataset and propose an explanation for this phenomenon.

5.3 The Arti�cial Dataset

To study the properties of G=MAT estimates, we need a dataset that is simi-
lar to a real one yet for which we know the true value of A. To construct such a
dataset, we �rst studied the statistical properties of the Spellman dataset consid-
ered in the previous sections. We then randomly generated matrices M,A and T

to obtain a dataset with similar properties.
We generated a dataset with 100 transcription factors, 100 motifs and 1000

genes.

The motif matrix M. The matrix M is a binary matrix of motif occurrences.
As a natural simpli�cation, we regard each column of this matrix as a set of i.i.d.
realizations of Bernoulli-distributed random variables. That is:

Mi` ∼ B(p`) ,
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Figure 5.1: The empirical cumulative distribution function of motif presence
probabilities p`, estimated on the Spellman dataset, compared to the cdf of the
Beta(1, 4) distribution.

where p` is the probability of motif m` presence in a randomly chosen gene.

By analyzing the Spellman dataset we see that the average absolute correla-
tion of the columns of the matrix M is less than 0.02. We can therefore safely
assume the columns to be independent. Finally, we observe that the distribution
of probabilities p` can be reasonably well described by a Beta(1, 4) distribution,
see Figure 5.1. Therefore, we generate the arti�cial matrix M as follows:

p` ← Beta(1, 4) independently for each column `,

Mi` ← B(p`) independently for each row i.

The TF expression matrix T. The matrix T of the Spellman dataset is more
di�cult to model than the motif matrix. Visual inspection (see Figure 5.2) shows
no clear column or row-based structure. The mean absolute correlation of matrix
rows is 0.16, and of the columns: 0.14. We chose to model T as a set of independent
columns. Even though it does not correspond exactly to what we observe on the
Spellman dataset, the assumption of independent microarray experiments is quite
viable.

The distribution of values in each column of T can be very well described by
normal distribution (see Figure 5.3). Examination of the means and standard
deviations of di�erent T columns shows that these can also be reasonably well de-
scribed by normal distributions (Figure 5.4). Therefore, we generate the arti�cial
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matrix T as follows:

mj ← N(0, 0.082) independently for each column j,

σj ← N(0.35, 0.092) independently for each column j,

Tkj ← N(mj, σ
2
j ) independently for each row k.

The parameter matrix A. We generate matrix A as follows: �rst set all values
to zero, then choose 3% of the coe�cients randomly and set their values to 0.05.
The reason for the choice of such a strategy is the following. Firstly, we believe
the true A to contain a very small number of nonzero elements. Secondly, we
wish the distribution of values in T to be reasonably similar to the distribution of
values in G in terms of mean and variance. Experiments showed that this can be
achieved by setting the nonzero values of A to 0.05.

The gene expression matrix G. The matrix G is generated according to the
model: G = MAT. In some experiments we also add noise to it, but we discuss
this further in the text.

5.4 Prediction versus Attribute Selection

As we saw in Section 5.2, a G=MAT model can discover relevant parameters
without achieving a satisfactory predictive performance. In this section we ex-
plain this phenomenon by demonstrating both experimentally and theoretically
how and why this can happen. We start with an arti�cial dataset introduced
in the previous section and consider two factors that in�uence model prediction
error: noise and incomplete data. We show that although these factors can sig-
ni�cantly decrease the model's predictive ability, they do not prevent the model
from discovering relevant parameters. In the following we refer to this capability
as attribute selection.

5.4.1 Experimental Setup

Let Ga,Ma,Aa and Ta denote the matrices of the arti�cial dataset, generated
as described Section 5.3. In the experiments that follow, we introduce certain
modi�cations to these matrices (such as add noise to Ga or drop rows from Ta),
estimate the parameter matrix Â using di�erent methods and examine the perfor-
mance of the estimated models in prediction and attribute selection. We measure
this performance as follows.
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Figure 5.2: Visualization of the �rst 40 rows of the T matrix of the Spellman
dataset. Dark points denote elements with smaller absolute values.
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Figure 5.3: The empirical cumulative distribution of values in the second column
of T can be approximated well by a Gaussian distribution N(−0.28, 0.53). The
situation is similar for other columns.
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Figure 5.4: The empirical cumulative distribution of the means (left) and stan-
dard deviations (right) of T columns can be well approximated by a Gaussian
distribution.
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Predictive performance. To measure predictive performance we simply con-
sider the mean squared error of the model:

MSE(Â) =
1

nG × nA

‖Ga −MaÂTa‖2 .

Attribute selection performance. To measure how well the estimated matrix
can be used for attribute selection we use the ROC area under curve (ROC AUC)

statistic (see Section 2.4.2). We consider those model parameters for which the
true value αa

`k was nonzero (in other words, parameters with values 0.05), as
positives, and all the rest as negatives. We then sort the parameters according
to their estimated values α̂`k and evaluate the ROC AUC of this sorted list. If
the positives all turn out to be on top of the list (i.e., their values estimated as
the largest), the value of ROC AUC will be 1. This means the model is perfect
for attribute selection. The ROC AUC score of 0.5 indicates a model that is not
better than random in guessing the relevant parameters. Finally, the ROC AUC
score is 0 if all the positives end up on the bottom of the list. This corresponds
to a model that is good for attribute selection, but somewhy orders attributes in
reverse.

5.4.2 In�uence of Noise

Consider the following modi�cation to the matrix Ga of the arti�cial dataset:

Ga = MaAaTa + ε , (5.1)

where ε is Gaussian noise with mean 0 and variance σ2
ε . This corresponds to

incorporating into the data a multitude of independent factors that cannot be
accounted for by the model parameters: external in�uences, nonlinear expression
regulation rules, measurement errors, etc. Let us examine how the prediction and
attribute selection performance depends on σ2

ε . For that we created 11 arti�cial
datasets, di�ering only in the variance of the noise σ2

ε , and applied the least squares
method and the ridge regression method with parameters λM = λT = 100 to these
datasets.

E�ect on prediction error. When the data is noise-free, i.e., σ2
ε = 0, the least

squares method will restore Aa precisely and the prediction error will be zero.
When σ2

ε > 0, the least squares estimate is not able to account for most of the
noise and the predictive error is proportional to σ2

ε . Other methods, such as ridge
regression, behave similarly. Their prediction error, by de�nition, is always greater
or equal than that of the least squares estimate. Experiment results are presented
in Figure 5.5 (left).
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E�ect on attribute selection. Figure 5.5 (right) shows how ROC AUC score
depends on the noise. As we see, the ROC AUC of the least squares estimate
deteriorates quite quickly with the introduction of noise. This is a natural result of
over�tting that takes place here due to the improperly large number of parameters
of the model. If the number of TFs nT was less than the number of arrays nA,
the ROC AUC of the least squares estimate would deteriorate much slower. We
illustrate this by considering an arti�cial dataset with only 50 transcription factors
instead of 100, the results are presented in Figure 5.6. Note that in both cases
the ridge regression estimate avoids over�tting and has a high ROC AUC score
despite the noise.

5.4.3 In�uence of Incomplete Data

Another important factor that can in�uence the predictive performance of the
model in practice is the incompleteness of data. Let us now generate the noise-free
version of the arti�cial dataset (Ga,Ma,Aa,Ta) and then drop the �rst n rows of
Ta and the �rst n columns of Ma. In some sense this is similar to adding noise to
Ga, but conceptually this is somewhat di�erent. This time we say that our model
is true, we just do not have enough data.

E�ect on prediction error. When n = 0 the prediction error is 0 and when
n = 100 the prediction error equals ‖Ga‖2, increasing rather uniformly in between.
See Figure 5.7 (left).

E�ect on attribute selection. Figure 5.7 shows that when we remove some
TFs and motifs from the dataset, thus �tting a model with a smaller number of
parameters than needed to explain the data completely, the ROC AUC score still
stays satisfactorily high.

5.4.4 Theoretical Justi�cation

In addition to the obvious experimental evidence, we provide an elegant theo-
retical justi�cation, demonstrating how the model can estimate relevant parame-
ters from incomplete data without being able to predict well. Let us return once
more to the example with the Spellman dataset from Section 5.2.

Motifs are the bottleneck. The major bottleneck for model performance on
the Spellman dataset was actually the small number of motifs. Indeed, if the
number of motifs nM were greater or equal to the number of genes nG, model error
would necessarily be 0. In our case, however, the number of motifs nM = 36 is
signi�cantly smaller than the number of genes nG = 5766. It follows from basic
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Figure 5.5: In�uence of noise on prediction error and ROC AUC. The left plot
demonstrates that the mean squared error of the least squares and ridge regression
estimates is proportional to the variance of the noise. The right plot shows that
the ROC AUC score of the least squares estimate deteriorates rapidly with the
introduction of noise due to over�tting, but the ridge regression estimate stays
resistant to noise.
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Figure 5.6: In�uence of noise on prediction error and ROC AUC. Here we used
an arti�cial dataset with only 50 transcription factors rather than 100. Unlike the
situation in Figure 5.5, there is no over�tting here and the least squares estimate
can tolerate the noise well. Nevertheless, the ridge regression estimate is still more
stable.
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Figure 5.7: In�uence of missing data on prediction error and ROC AUC. If we
drop columns from Ta and rows from Ma, thus hiding some TFs and motifs from
the dataset, the model error increases (left) but the ROC AUC stays high (right).

linear algebra, that an arbitrary vector of dimension 5766 can not in general be
represented as a linear combination of just 36 base vectors. Therefore, also the
G=MAT model error must be high.

To illustrate this more formally, we consider the following model:

Ĝ = MC , (5.2)

where C is an nM×nA matrix of parameters. First, note that this model is better
than the G=MAT model in terms of prediction.

Theorem 5.1 Let G,M,T be G=MAT matrices. Let ĈLS be the least squares �t

for the model (5.2) and let

MSEGMC(ĈLS) =
1

nG × nA

‖G−MĈLS‖2

be the corresponding model error. Let ÂLS be the G-MAT least squares �t and let

MSEGMAT(ÂLS) =
1

nG × nA

‖G−MÂLST‖2

be the corresponding model error. Then

MSEGMC(ĈLS) ≤ MSEGMAT(ÂLS) .
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Proof. Let Ĉ∗ = ÂLST. The error of the G=MC model for such value of C is
then equal to

MSEGMC(Ĉ∗) =
1

nG × nA

‖G−MĈ∗‖2

=
1

nG × nA

‖G−MÂLST‖2 = MSEGMAT(ÂLS)

By de�nition, ĈLS is the matrix of model parameters for which the model error
is minimal and therefore

MSEGMC(ĈLS) ≤ MSEGMC(Ĉ∗) = MSEGMAT(ÂLS) .

Next, note that in the G=MC model (5.2) each column of G is represented as a
linear combination of the columns of M, with coe�cients given in the correspond-
ing column of C. As we have noted above, this is rather improbable that there
exists an exact representation of the 5766-dimensional column of G in terms of
just 36 columns of M and therefore it is not surprising that with high probability
there does not exist a C for which the error of the G=MC model would be low
on the Spellman dataset. As it follows from the above theorem, the error of the
G=MAT model must be at least as high as that of the G=MC model. Evalua-
tion on data shows that, in fact, the error of the G=MC model on the Spellman
dataset is exactly equal to the error of the G=MAT model. This explains why
the bottleneck lies precisely in the low number of motifs: it is just not possible to
predict better using a linear model with so few motifs.

Introducing latent motifs. We could improve the predictive performance of
the model if we added additional motifs mnM+1,mnM+2,mnM+3, . . . ,mnG

to the
data. Suppose that these motifs do exist and let the unknown motif occurrence
matrix for these new motifs be Mnew. The full motif matrix Mfull is then the
concatenation of the matrices M and Mnew:

Mfull = (M Mnew) .

We also incorporate new rows into the parameter matrix to account for the
new motifs. The full parameter matrix Afull is therefore:

Afull =

(
A

Anew

)
.

The G=MAT model in the presence of the new motifs now takes the following
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form:

Ĝ = MfullAfullT =

= (MA + MnewAnew)T =

= MAT + MnewAnewT = MAT + BT , (5.3)

where B is the additional matrix of parameters that needs to be estimated.

It is natural to estimate the parameters (A,B) of the model (5.3) using the
least squares method with a penalty on B.

De�nition 5.1 De�ne the least squares �t for the parameter matrices (ÂLS, B̂LS)

of the model (5.3) as follows:

(ÂLS, B̂LS) = argmin
A,B

‖G−MAT−BT‖2 + λ‖B‖2 , (5.4)

where λ > 0 is the penalty coe�cient.

Quite surprisingly, the solution ÂLS to (5.4) is exactly equal to the least squares
solution of G=MAT (4.4).

Theorem 5.2 The solution to the problem (5.4) can be computed as follows:

ÂLS = M+GT+ + (M+M− I)K + L(TT+ − I) , (5.5)

B̂LS = (G−MÂLST)TT (TTT + λI)−1 , (5.6)

where K and L are any nM × nT matrices.

Proof. The proof is similar to the proof of Theorem 4.1. The objective function
in problem (5.4) is a convex quadratic function and to �nd its minimum we search
for the points where the gradient is zero:

∂‖G−MAT−BT‖2 + λ‖B‖2

∂A
= 0, (5.7)

∂‖G−MAT−BT‖2 + λ‖B‖2

∂B
= 0. (5.8)
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We start with equation (5.7) and solve as in Theorem 4.1:

∂

∂A

∑
i,j

(Gij − (MAT)ij − (BT)ij)
2 = 0

∑
i,j

2(Gij − (MAT)ij − (BT)ij)
∂(−(MAT)ij)

∂A
= 0 ,∑

i,j

−2(Gij − (MAT)ij − (BT)ij)Mi`Tkj = 0, for all `, k ,

MT (G−MAT−BT)TT = 0 . (5.9)

Next, we proceed with equation (5.8) similarly:

∂

∂B

∑
i,j

(Gij − (MAT)ij − (BT)ij)
2 +

∂

∂B
λ
∑
i,k

B2
ik = 0

∑
i,j

2(Gij − (MAT)ij − (BT)ij)
∂(−(BT)ij)

∂B
+ 2λB = 0 , (5.10)

Consider the derivative of −(BT)ij with respect to Bικ:

∂(−(BT)ij)

∂Bικ

=
∂ (−

∑
k BikTkj)

∂Bικ

=

{
−Tκj, if i = ι,

0, otherwise.
(5.11)

Substituting it into (5.10):∑
j

−2(Gιj − (MAT)ιj − (BT)ιj)Tκj + 2λBικ = 0, for any ι, κ ,

which can be rearranged to the matrix form:

(G−MAT−BT)TT = λB. (5.12)

Now substitute (5.12) into (5.9):

MT (G−MAT−BT)TT = λMTB = 0 ,

and thus, because λ 6= 0:
MTB = 0 .
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As a result, we can transform equation (5.9) to the familiar form:

MT (G−MAT−BT)TT = MT (G−MAT)TT −MTBTTT

= MT (G−MAT)TT − 0

= MT (G−MAT)TT = 0 .

The solutions to this equation are exactly the solutions of (4.3) given by Theorem
4.2:

ÂLS = M+GT+ + (M+M− I)K + L(TT+ − I) . (5.13)

Finally, substituting (5.13) into (5.9) we get:

(G−MÂLST−BT)TT = λB,

(G−MÂLST)TT −BTTT = λB,

(G−MÂLST)TT = BTTT + λB,

(G−MÂLST)TT = B(TTT + λI).

The matrix (TTT +λI) is always invertible for λ > 0 (see equation (2.3) in Section
2.1), and therefore, the solution B̂LS is:

B̂LS = (G−MÂLST)TT (TTT + λI)−1 .

The result of Theorem 5.2 means that by introducing a number of unknown
(latent) motifs into G=MAT, we still keep the value and interpretation of the
parameter matrix ÂLS at the same time elegantly getting rid of the �motif bot-
tleneck�. The predictive error of the new model (5.3) is signi�cantly lower. For
example, on the Spellman dataset the G=MAT+BT model has a mean squared
error of 0.

To summarize, we have presented both experimental and theoretical evidence
for the possibility of our model to perform well for attribute selection despite the
very high mean squared error.

5.5 Comparison of Methods

In this section, we use the arti�cial dataset to compare the attribute selection
performance of the di�erent G=MAT estimation methods presented in Chapter 4.
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5.5.1 Choice of the λ Parameter

A number of methods require setting the regularization parameter λ. To per-
form a fair comparison, we evaluate the performance of these methods for several
values of λ on a single dataset.

Test dataset. We constructed the test dataset as follows. First we generated a
noise-free dataset (Ga,Ma,Aa,Ta) as described in Section 5.3. Let σ2 = D(Ga)

be the variance of Ga. We added zero-mean Gaussian noise to Ga with variance
4σ2. Finally, we dropped 80 rows of Ta and 80 columns of Ma thus leaving only
20 TFs and 20 motifs in the dataset. We believe that such a noisy setup with
a signi�cant lack of information might correspond closely to the real biological
situation.

Methods. In the experiment we compared the following G=MAT methods: reg-
ularized least squares (De�nition 4.2), ridge regression with λM = λT = λ (De�-
nition 4.3), sparse regression (De�nition 4.5), p-value-based attribute selector for
ridge regression (De�nition 4.8), z-score-based attribute selector for ridge regres-
sion (De�nition 4.9) and positivity-based attribute selector for ridge regression
(De�nition 4.7). For each method and for each value of the regularization param-
eter λ we computed the ROC AUC score as described in Section 5.4.1.
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Figure 5.8: The ROC AUC score of di�erent estimation methods for di�erent
values of λ.

Results. The results are depicted in Figure 5.8. We can clearly see that there
was no signi�cant di�erence in performance among all methods on this dataset.
The sparse regression estimate only worked with low values of the regularization
parameter, but for other methods λ could be rather freely chosen within the range

74



0 . . . 10 with little e�ect on performance: the relatively small number of model
parameters prevents over�tting and hence there is no real need for regularization.

5.5.2 Comparison of Performance

In the previous section we compared the parameterized algorithms on a single
dataset and discovered that most of them perform well when λ = 10. Here we �x
this value of λ for all parameterized methods except sparse regression, for which
we �x λ = 10−5. This way we get rid of the parameterization issue, and can
perform a fair comparison among all methods.

Test setup. We test each method 100 times by generating a new random dataset
on every iteration. Each dataset is generated as described in the previous section.
The ROC AUC scores of all runs are averaged to produce the �nal score.

Methods. We add the following parameter-free methods into the comparison:
least squares regression (Theorem 4.3), correlation-based estimate (Theorem 4.7),
and the p-value, z-score and positivity based attribute selectors for least squares.

Results. The results are presented in Figure 5.9. In general, all methods perform
quite well, most of them achieving ROC AUC score higher than 0.9. The best
performance (0.983) is achieved by the correlation-based estimate. Although it
di�ers only slightly from the second best result (ridge regression z-score, 0.959),
the di�erence is statistically signi�cant. In 79 iterations out of 100 the correlation-
based estimate was better than the one based on ridge-regression z-score.

The results also clearly demonstrate how the p-value and z-score-based ran-
domization techniques improve the performance of the base methods.

5.5.3 The E�ect of Centering

The correlation-based estimate, despite its good performance on our test dataset,
can be computationally expensive. In Theorem 4.9 we have demonstrated that an
approximation can be obtained by applying the least squares method to the prop-
erly centered data. Here, we demonstrate that this is indeed the case. Figure 5.10
introduces the centered least squares and centered ridge regression into compari-
son as well as their p-value and z-score randomizations. We see that the centered
versions of the least squares and ridge regression perform even better than the
correlation-based approach, thus beating all other methods. It is worth noting
that the p-value and z-score randomizations could not further boost their perfor-
mance.
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Figure 5.9: The ROC AUC score of di�erent estimation methods, averaged over
100 runs.
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Chapter 6

Applications of G=MAT

In theory, there is no di�erence between theory and practice.

But in practice there is.

Jan L. A. van de Snepscheut

As explained and illustrated in the previous chapters, G=MAT analysis can
be used to discover putative associations between motifs and transcription factors.
However, this is not the only task that can be addressed using G=MAT. In this
chapter, we present a number of examples demonstrating various other applica-
tions of G=MAT analysis in practical settings. The detailed results of all the
experiments are available via the supplementary web tool, described in Appendix
A.

6.1 Discovering Process-speci�c TFs and Motifs

The most obvious application for the G=MAT model is the discovery of pu-
tative TF-motif associations from gene expression and motif presence data. An
example of such analysis has already been presented in Section 5.1. However,
quite often the discovered associations are rather indirect and require extensive
biological knowledge to be veri�ed. The results are easier to interpret if we con-
sider the top-scoring TFs and the top-scoring motifs as two separate lists. These
lists contain TFs and motifs that are speci�c to the processes measured in the
microarray data.

Related work. Such an approach was taken in the work of Middendorf et al.
[MKW+04], where the authors applied their GeneClass algorithm to yeast stress
response data. The GeneClass algorithm works in the same setting as G=MAT.
Namely, it is a predictive model that uses TF-motif pairs to predict expression of
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target genes. Unlike G=MAT, the GeneClass algorithm is based on a much more
complex model � an alternative decision tree.

The GeneClass algorithm is reported to predict expression values quite well,
but its main use is the ranking of most in�uential TF-motif pairs. In their paper,
the authors apply this algorithm to a yeast stress response dataset. They observe
that the TFs and the motifs in the top-scoring pairs are indeed known to be related
to stress response. We applied G=MAT on the same dataset and observed similar
results.

Data. Unfortunately, it was not possible to obtain exactly the same data as the
one that was used in the GeneClass experiments due to a minor, but unrecoverable
error in the supplementary materials of the GeneClass paper. However, following
the instructions provided in the paper, we reconstructed a similar dataset. The
dataset consists of microarray data by Gasch et al. [GSK+00] and known yeast
binding sites from TRANSFAC, matched on 500bp upstream sequences from SGD
using the PATCH tool that comes with TRANSFAC.

Results. We applied G=MAT on the dataset and examined the top-scoring
coe�cients of the model. In general, the exact ranking of the coe�cients var-
ied depending on the chosen G=MAT estimation method and its parameters.
Nonetheless, a certain small set of TFs and motifs consistently occupied the top-
scoring positions. This is rather similar to the situation in the GeneClass paper,
where the exact ranking varied depending on the scoring algorithm, yet several
TFs were consistently present in the top.

Table 6.1 presents the result of centered ridge regression (with λM = λT = 1),
applied to the dataset. The top-scoring transcription factor, USV1 coincides with
the top-scoring regulator obtained by GeneClass. The remaining regulators di�er
from those reported by GeneClass, yet we believe our list to make no less sense.
Indeed, the discovered TFs and motifs are known to be involved in the processes
related to stress response.

• The RSF2 gene is known to be involved in glycerol-based growth and respi-
ration [LROH05]. These processes have a clear relation to stress response,
because use of glycerol is one of the reactions of yeast to hyperosmotic stress
[Att97].

• The SHP1 gene has been predicted to have a role in stress response [SSR+03].

• The MSN1 gene is known to be involved in hyperosmotic stress [RRG+99].

• It is thought that the major function of the MIG1 regulator is to repress the
transcription of genes that are responsible for sugar utilization [Car99].
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Motif TF Score

Y$GAL1_15 USV1 0.63
Binding site for

MIG1.

Putative transcription factor containing a C2H2 zinc �nger;

mutation a�ects transcriptional regulation of genes involved in

protein folding, ATP binding, and cell wall biosynthesis.

Y$HSP12_01 USV1 0.52
Binding site for

ABF1.

Putative transcription factor containing a C2H2 zinc �nger;

mutation a�ects transcriptional regulation of genes involved in

protein folding, ATP binding, and cell wall biosynthesis.

Y$HSP12_01 RSF2 0.50
Binding site for

ABF1.

Zinc-�nger protein involved in transcriptional control of both

nuclear and mitochondrial genes, many of which specify prod-

ucts required for glycerol-based growth, respiration, and other

functions.

Y$CHA1_04 SHP1 0.50
Binding site for

ABF1.

UBX (ubiquitin regulatory X) domain-containing protein

that regulates Glc7p phosphatase activity and interacts with

Cdc48p; noone reads this, anyway. SHP1 interacts with ubiq-

uitylated proteins in vivo and is required for degradation of a

ubiquitylated model substrate.

Y$GAL1_15 MSN1 0.48
Binding site for

MIG1.

Transcriptional activator involved in regulation of invertase

and glucoamylase expression, invasive growth and pseudohy-

phal di�erentiation, iron uptake, chromium accumulation, and

response to osmotic stress; localizes to the nucleus.

Table 6.1: G=MAT analysis of the Gasch dataset. The table presents �ve motif-
TF pairs having the largest values of the corresponding parameters α̂`k. The
parameter values are given in the rightmost column.

• The gene ABF1 encodes a multifunctional regulator particularly involved
in di�erent chromatin-related events [RSOC89]. The highly-scoring binding
site Y$HSP12_01 of this protein was originally discovered in the promoter
of the HSP12 heat shock gene [PM90].

Other G=MAT estimates produced di�erent, but still meaningful results. For
instance, the heat shock factor HSF1 occupies several top-scoring positions in the
G=MAT correlation-based results. As several of the microarray experiments were
measuring the response of yeast to heat shock, this result makes sense.
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6.2 Motif Discovery

In the examples considered so far, we used a rather small set of well-known
motifs and aimed at identifying the most in�uential out of these. Alternatively,
we can use a large set of motifs encompassing all the substrings of a given length.
Finding the most in�uential out of that set is equivalent to identifying biologically
meaningful sequences in DNA � a task known as motif discovery. This task is one
of the key subjects in bioinformatics. A good overview of motif discovery methods
and applications is provided in the master's thesis of M. Haeussler [Hae05].

Related work. An approach similar to G=MAT has already been used for motif
discovery in the work of Bussemaker et al. [BLS01], where the authors applied
their REDUCE algorithm for yeast promoter sequences. In brief, the idea of the
REDUCE algorithm is to use the Ĝ = MC model (described in Section 5.4.4)
to score motifs and select the highest scoring ones as biologically signi�cant. In
their paper, the authors applied this idea to microarray data by Spellman et al.
[SSZ+98]. Their approach was to iteratively construct a set of 7-nucleotide motifs
that correlate most with the gene expression values. Conceptually, this is quite
similar to what is done using G=MAT.

Data. We considered all possible 7-mers of letters {A,T,C,G} and matched them
on the promoters (800bp upstream sequences) of the 5766 genes of the Spellman
dataset. The resulting motif matrix contained 47 = 16384 motifs, which was sig-
ni�cantly larger than the number of genes nG = 5766 and could lead to over�tting.
To reduce the number of motifs, we selected about 4000 of the 7-mers that were
present in at least 351 promoters. The microarray dataset that we used is the one
described in Section 5.1.

Results. The top scoring motif of the least squares estimate was AAATCTT. This
does not di�er much from the two top-scoring results of the REDUCE algorithm:
AAAATTT and AAATTTT. Also interesting was the top-scoring motif of the G=MAT
correlation-based estimate, CGATGAG. This motif is the fourth highest on the RE-
DUCE result list. Notably, both motifs have also been discovered from the same
data by Vilo et al. in [VBJ+00]. The other high-scoring motifs were di�erent from
the REDUCE results, and might even contain novel discoveries.

6.3 Automatic GO Annotation

Automated assignment of relevant Gene Ontology (GO) annotations to genes
is an important problem and a popular research direction in contemporary com-
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Motif TF Score

GO:0000747 KAR4 0.07
Conjugation

with cellular

fusion

Transcription factor required for gene regulation in response

to pheromones.

GO:0043332 KAR4 0.06
Mating projec-

tion tip

Transcription factor required for gene regulation in response

to pheromones.

GO:0005762 RGM1 0.05
Mitochondrial

large ribosomal

subunit

Putative transcriptional repressor with proline-rich zinc �n-

gers.

GO:0006999 CRF1 0.05
Nuclear pore or-

ganization and

biogenesis

Transcriptional corepressor involved in the regulation of ribo-

somal protein gene transcription via the TOR signaling path-

way and protein kinase A, phosphorylated by activated Yak1p

which promotes accumulation of Crf1p in the nucleus.

GO:0005763 RGM1 0.05
Mitochondrial

small ribosomal

subunit

Putative transcriptional repressor with proline-rich zinc �n-

gers.

Table 6.2: G=MAT for GO annotation on the Spellman dataset. The table
presents �ve (GO term, TF) pairs having the largest values of the correspond-
ing parameters α̂`k.

putational biology [RKP+07]. In this section, we demonstrate how G=MAT can
be employed for this purpose.

In all our previous experiments, the values of model parameters could be inter-
preted as follows: a high α̂`k indicates that the expression of transcription factor
tk correlates well with the expression of genes that have motif m` in their pro-
moter. In this experiment, we propose to replace motifs with GO terms, and
the motif matrix M with the binary matrix of GO annotations. Formally, let
{m1,m2, . . . ,mnM

} be a set of GO terms, and let

Mi` =

{
1, if the gene gi is annotated with the term m`,

0, otherwise.

In this case, the interpretation of model parameters changes to the following: a
high α̂`k indicates that the expression of transcription factor tk correlates well with
the expression of genes that are annotated with the GO term m`. Therefore, a
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high value of α̂`k suggests that the TF tk is also somehow related to the term
m`. This allows to use G=MAT for discovering putative GO annotations. We
illustrate the idea with an experiment.

Data. We used the Spellman dataset, described in Section 5.1, for the G and
T matrices. To construct the matrix M, we selected 200 GO terms that had the
greatest number of genes associated with them and created a 5766 × 200 binary
matrix of annotations as described above.

Results. Ridge regression with λM = λT = 1, produced quite interesting results
on this dataset. Out of the ten top-scoring pairs of TFs and GO terms, one
corresponded to a known GO annotation. This is statistically signi�cant. Indeed,
if we picked ten pairs randomly, the expected number of guesses would only be 0.10.
Moreover, the ten pairs with the lowest scores contained two known annotations,
which is even more signi�cant. Finally, consider the �ve top-scoring pairs presented
in Table 6.2. The discovered pairs are, at the very least, quite consistent.

• The KAR4 gene is associated to the terms �conjugation with cellular fusion�

and �mating projection tip�. Both terms are related to the mating process,
and the KAR4 gene is actually known to be involved in this process. In fact,
its current true annotation is �karyogamy during conjugation with cellular

fusion�.

Also, note that we can regard the obtained result as two separate lists, as we did
it in Section 6.1. In this case, the list of top-scoring GO terms represents the
important processes that were measured in the expression data.

6.4 A Non-biological Application

The G=MAT model can also be useful outside of biological applications. For
instance, consider the following generalization of the G=MAT context. Let there
be a set of subjects {g1, g2, . . . , gnG

}, a set of objects {a1, a2, . . . , anA
} and suppose

that each subject gi has provided a score Gij to each object aj. Next, suppose
that subjects have attributes {m1,m2, . . . ,mnM

} and for each subject gi the value
of the attribute m` is given by Mi`. Finally, suppose that objects have attributes
{t1, t2, . . . , tnT

} and for each object aj the value of the attribute tk is given by
Tkj. In the previous examples, the subjects were genes, objects were experiments,
subject attributes were motifs or GO annotations, and object attributes were
transcription factors. We have shown that the G=MAT model makes sense for
such a biological setup. However, other contexts exist, where the scores Gij can
be meaningfully modeled with G=MAT.
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Consider the following example. Let subjects be people, objects be movies
and let each person provide each movie with a rating that represents his opinion
about the quality of that movie. As a simpli�cation, we can assume that people
judge movies by assessing certain features separately and adding up the results.
For example, if John loves dramas with happy ending, he will give 1 point to any
movie that is a drama, and an additional 1 point to any movie that has a happy
ending. Similarly, if Jane strongly dislikes horror movies, she will reduce the score
of any movie by 2 points if it has elements of horror. Let us select movie attributes
�drama�, �horror� and �happy ending� and person attributes �likes drama�, �likes
horror� and �likes happy ending�. It is possible to see that with such attributes,
and in the simpli�ed context described above, movie ratings can indeed be modeled
using G=MAT.

Experimental Setup. We have performed a simplistic experiment illustrating
this idea. We created an online questionnaire, in which visitors were asked to
estimate their current mood (whether they feel elevated, calm or depressed) and
select from a given set of popular movies those that would suit their current
mood best, i.e., they would agree to watch those movies now. About 100 Tartu
University students have responded to our call and �lled in the questionnaire.

Data. We constructed a G=MAT dataset (G,M,T) as follows. The subjects
gi were the people that took part in the survey, the objects aj were the movies
that the people could chose from, and the matrix G was constructed as a binary
matrix where

Gij =

{
1, if the person gi chose the movie aj as �tting its current mood,

0, otherwise.

The set of movie attributes tk was chosen as the set of genres

{Cartoon,Thriller,Drama,Comedy, Sci-Fi},

and the matrix T was a binary matrix where

Tkj =

{
1, if the movie aj had elements of genre tk in it,

0, otherwise.

Finally, the set of person attributes m` was the set of mood types

{Happy,Calm, Sad},
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and the matrix M was a binary matrix where

Mi` =

{
1, if the person gi reported her current mood as m`,

0, otherwise.

Results. The result of a G=MAT analysis of this dataset provides a ranked list
of associations between person attributes (mood) and movie attributes (genre).
Before performing the experiment, we expected to see positive associations be-
tween happy mood and comedy movies, also sad mood and drama movies. And
indeed, the pair relating happy mood to comedy movies was the highest scoring
pair according most estimates, scoring signi�cantly higher than all the other associ-
ations. However, our second guess was not re�ected in the results: the association
of drama to sadness did not get a high score.
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Summary

A conclusion is the place where you got tired of thinking.

The development and functions of every part of our body, every single cell,
are encoded in the DNA: a molecule present in nearly all our cells. A multitude
of cell types exist, such as skin cells, blood cells, neurons, etc., yet all of these
cells contain exactly the same copy of the DNA. The type of a cell is therefore
not only determined by the DNA sequence, but rather by the complex processes
of gene regulation constantly taking place inside each cell. In particular, there
exist certain transcription factor proteins, that can stick to certain sites on the
DNA and thus switch the corresponding DNA regions �on� or �o��. The question
of which transcription factors bind to which DNA sites and when they do it, is
of great interest for contemporary biology. For instance, it might show ways of
converting skin cells into brain, bone or blood cells. This would have signi�cant
implications for medicine. Unfortunately, it is rather di�cult and expensive to
�gure out the answer to this question using methods of experimental biology.

We proposed a statistical model to address this problem. Using the widely and
freely available microarray data together with the DNA sequences, our method can
propose potential DNA-binding candidates together with the places where they
could bind. The main idea is to use a linear model that predicts gene expression
values Gij as a weighted sum of products of expression values of transcription
factors Tkj and motif counts Mi`:

Gij =

nM∑
`=1

nT∑
k=1

α`kMi`Tkj .

Each parameter α`k of this model represents the association strength between some
motif m` and some transcription factor tk. Given a dataset of expression measure-
ments and motif counts, represented in the form of three matrices (G,M,T), it
is possible to estimate the values of the model parameters (α̂`k). The estimated
parameters with the largest values correspond to putative associations between
motifs and transcription factors.
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In this work, we discussed and illustrated several methods for computing pa-
rameter estimates, such as least squares regression, regularized least squares re-
gression, ridge regression and a correlation-based method.

We studied the applicability of the model to biological data. Experiments on
both real and arti�cial data demonstrated that our model is not predictive, but
purely descriptive. That is, the prediction error of the model is very large, but the
estimated parameters are still reliable and biologically meaningful. For instance,
we have shown that associations discovered using our model from the well-known
Spellman microarray dataset correspond to known indirect relations between tran-
scription factors and motifs. Additionally, we illustrated how the G=MAT model
can be applied in several other contexts besides the discovery of TF-motif as-
sociations. We demonstrated how G=MAT can be applied for the discovery of
process-speci�c TFs and motifs, for motif discovery and for GO annotation. Fi-
nally, we presented an example of a completely non-biological application in the
context of movie preferences.
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G=MAT: meetod geeniekspressiooni ja DNA

seondumisandmete ühendamiseks

Magistritöö (40ap)

Konstantin Tretjakov

Resümee

DNA on molekul, mis kannab pärilikku informatsiooni ning määrab suures
osas terve meie keha ehituse ja arengu. Meie keha koosneb erinevatest rakutüüpi-
dest, kuid kõikides rakkudes on sama DNA. Iga raku omadused on peamiselt
määratud selle poolt, millised DNA alad (geenid) on antud rakus aktiivsed ja
millised mitte. Erilist rolli geenide aktiivsuse määramisel mängivad transkript-
sioonifaktorid. Need on valgud, mis on võimelised seonduma teatud kohtadega
(saitidega) DNA ahelal ning selle kaudu lülitada �sisse� või �välja� vastavaid DNA
alasid (geene). Üks oluline bioloogiline küsimus seisneb selles, millised transkript-
sioonifaktorid seonduvad milliste saitidega. Sellele küsimusele vastuse leidmiseks
veel lihtsat ja odavat tehnoloogiat ei eksisteeri.

Antud töös kirjeldatakse statistilist mudelit, mille abil on võimalik otsida
potentsiaalseid seoseid transkriptsioonifaktorite ja seondumissaitide vahel kasuta-
des olemasolevaid mikrokiibi ning DNA järjestuse andmeid. Meetodi põhiidee
on kasutada lineaarset mudelit, mis ennustab geenide ekspressiooni transkript-
sioonifaktorite ekspressiooni ning seondumissaitide olemasolu põhjal. Selle mudeli
parameetreid võib interpreteerida kui faktorite ja saitide vaheliste seoste tugevust.

Töös on välja toodud mitu algoritmi mudeli parameetrite hindamiseks ning on
põhjalikult analüüsitud mudeli sobivust bioloogilisteks rakendusteks. Kuigi mudel
ei ennusta hästi, on tema abil hinnatud parameetrite väärtused siiski usaldus-
väärsed ning seega on mudel kasutatav kirjeldava analüüsi jaoks. Töös demonst-
reeritakse mitut erinevat mudeli rakenduslikku näidet nii bioloogiliste kui ka mitte-
bioloogiliste andmete peal.
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Appendix A

The G=MAT Web Tool

Figure 6.1: GMAT-Web. Results page (fragment).

To conveniently perform G=MAT analyses and store the obtained results, we
have created a web-based tool, GMAT-Web. In this appendix, we provide a brief
overview of this tool.

The purpose of GMAT-Web is to make experiments, such as those described in
the main text of the thesis, convenient to perform and manage. The tool supports
several features that achieve this goal.

Multiple datasets. GMAT-Web can manage several G=MAT datasets. Each
dataset is represented as a directory containing several �les. The dataset descrip-
tion is stored in a text �le meta.txt. The names and meta information about
genes, microarrays, motifs and transcription factors are stored in tab-separated
plaintext �les genes.meta, arrays.meta, motifs.meta and tfs.meta respec-
tively. The matrices G, M and T are stored in the tab-separated plaintext �les
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g.tab, m.tab and t.tab respectively. Finally, a binary validation matrix A can
be assigned to the dataset for result validation by storing it in the tab-separated
plaintext �le a.validate.tab. Figure 6.2 presents a screenshot of the page that
shows a list of all datasets in the system. A new dataset can be added by upload-
ing a properly formed directory to the server. The current version of the tool does
not allow users to add datasets via the web interface.

Multiple analysis methods. Each dataset can be analyzed using the following
G=MAT parameter estimation methods: least squares, ridge regression, z-score-
based and positivity-based attribute selectors for ridge-regression, correlation-
based estimate. We did not include the regularized least squares and the sparse
regression because our iterative implementations of these methods are ine�cient
for online use. Figure 6.3 demonstrates the selection of analysis methods as they
are presented to the user via the web interface.

Asynchronous computation and caching. The computation of G=MAT pa-
rameters can take considerable time if the dataset is large or when many iterations
for the randomization algorithms are requested. To be able to run such computa-
tions from within a web interface we make them asynchronous. That is, when the
user chooses to apply one of the analysis methods to a dataset, the computation
is started in a separate process. The user can then observe the progress of this
process via the web interface, yet she is not required to stay on the page until the
results are ready. Once the result is ready it will be cached and the next time the
user requests the same result it will not be recomputed again but retrieved from
the cache immediately. Figure 6.4 demonstrates the progress screen of a running
job.

Results display. Once the parameter matrix Â is estimated, GMAT-Web presents
the 10 top-scoring and 10 lowest-scoring coe�cients as pairs of motifs and tran-
scription factors. If the dataset contains a validation matrix A, the true positive
rows in the result list are highlighted and some validation metrics are computed,
such as the ROC AUC score of the �t. Figure 6.1 shows a part of the results
screen.

Availability. The tool is available on all platforms, where Python 2.5 and its
numerical extensions library NumPy can be run. This includes, in particular,
Windows, MacOS and Linux on the PC-compatible or PowerPC processors. Al-
though it is a web solution, well-suitable to be run on a server, it can be as easily
started on any client machine. The current version of the software is available on
the CD attached to the hardcopy as well as on the supplementary website [GMA].
It is free for non-commercial use.
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Implementation details. The tool was developed using Python 2.5 [Pyt]. The
web interface was constructed using the TurboGears framework [Tur] that includes
the CherryPy standalone webserver [Che], SQLite3 embedded database engine
[SQLa], SQLObject object-relational mapping library [SQLb] and the Kid tem-
plating language [Kid]. The methods of linear algebra, required for the parameter
estimation algorithms were available in the NumPy [Num] package.
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Figure 6.2: GMAT-Web. List of datasets.

Figure 6.3: GMAT-Web. Di�erent analysis methods.

Figure 6.4: GMAT-Web. Job progress screen.
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